
USB Device Drivers: A Stepping Stone into your Kernel

Moritz Jodeit
n.runs AG

Nassauer Str. 60, D-61440 Oberursel
moritz.jodeit@nruns.com

Martin Johns
SAP Research

Vincenz-Priessnitz-Str. 1, D-76131 Karlsruhe
martin.johns@sap.com

Abstract—The widely–used Universal Serial Bus (USB) ex-
poses a physical attack vector which has received comparatively
little attention in the past. While most research on device
driver vulnerabilities concentrated on wireless protocols, we
show that USB device drivers provide the same potential for
vulnerabilities but offer a larger attack surface resulting from
the universal nature of the USB protocol. To demonstrate
the effectiveness of fuzzing USB device drivers, we present
our prototypical implementation of a mutation–based, man-
in-the-middle USB fuzzing framework based on an emulated
environment. We practically applied our framework to fuzz the
communication between an Apple iPod device and a Windows
XP system. This way, we found several potential vulnerabilities.
This supports our claim that the USB architecture exposes real
attack vectors and should be considered when assessing the
physical security of computer systems in the future.

I. INTRODUCTION

The Universal Serial Bus (USB) is a widely–used serial
cable bus for connecting various peripherals to a host
computer. Because of the widespread use and the ubiquitous
nature of USB it provides an compelling attack surface. In
this paper we are concentrating on attacks against device
drivers and the USB stack itself.

The fact that device drivers provide the potential for
exploitable vulnerabilities was already shown in [6] and [10].
But compared to 802.11 wireless device drivers, USB has the
property of being a universal transport medium for further
protocols. Hence, potential attacks are not limited to the
USB related code inside the kernel but extend over a large
number of different kernel sub-systems and device drivers
reachable by USB devices which would not be associated
with USB at a first glance. The USB protocol allows to reach
those parts of the kernel which could otherwise not easily
be attacked remotely.

This paper proposes a mutation–based USB fuzzing
framework. Our approach is based on fuzzing in an emulated
environment inspired by the work of Keil and Kolbitsch
[9] for 802.11 wireless fuzzing. Instead of emulating USB
devices in software we are attaching physically connected
USB devices to the guest operating system running inside
a virtual machine and fuzz the communication between the
physical device and the virtual host.

Relying on a mutation–based approach gives us the flex-
ibility to fuzz test a broad range of different device drivers
without the need to emulate every single device which would

be very time consuming. Doing the fuzzing in an emulated
environment comes with various advantages. Besides the
good target monitoring capabilities, virtual machine snap-
shots allow us to do exact matching between a specific USB
device attachment and a potential crash.

II. TECHNICAL BACKGROUND

The USB architecture can be divided into three separate
parts. These are the USB devices, the USB host and the
USB interconnect, which connects all USB devices with a
single USB host.

USB devices are either hubs or functions. A USB hub is a
special device that provides one or more attachment points
to the bus, while a function provides a specific capability.
Examples are a USB mouse device which usually provides
a HID (Human Device Interface) function while an external
hard disk drive provides a mass storage function. Each USB
host controller provides a root hub, which is the attachment
point for all connected devices.

The USB host is the central point in the USB architec-
ture. It interacts through the host controller with the rest
of the USB system. Only a single USB host per bus is
allowed. Tasks of the host include the management of all
transfers, detection of device attachment and removal and
configuration of new devices. It is important to note, that
the host plays the active part in the whole communication.
All transfers are initiated by the host and USB devices only
answer to requests send by the host1.

Figure 1 shows the logical connection between a USB
device and the host. Communication takes place using so
called pipes. Pipes are unidirectional or bidirection commu-
nication channels between the host and a USB device. The
end of each pipe connects to an endpoint.

Endpoints are compareable with IP sockets. They are the
source or sink of a communication flow on the bus. Each
endpoint has an associated direction which is either IN or
OUT. IN endpoints transfer data from the device to the host,
while OUT endpoints transfer data from the host to the
device. Each USB device provides at least the endpoint 0
which is connected with the default control pipe. The main
purpose of the default control pipe is to configure the device

1One exception is the USB OTG supplement[15] to the USB
specification[7].



once it is attached. Depending on the purpose of the device
multiple other endpoints may be provided.

Multiple pipes can be grouped into interfaces where each
interface provides a specific functionality and is handled by
a single USB device driver on the host. One interface may
provide a mass storage device while a second interface may
provide a USB printer.

Configurations group multiple interfaces and are mainly
used to provide the same functionality with different settings.
Only a single configuration can be active at a time.

Device driver 1

Interface 1

EP1 

(OUT)

EP1 

(IN)

EP2 

(IN)

Device driver 2

EP3 

(IN)

Interface 2

EP4 

(OUT)

...

...

Configuration

USB host

USB device

EP0 

(OUT)

Default control 

pipe

EP0 

(IN)

Figure 1. Logical connection between a USB device and a host

A. Device Enumeration

When a new USB device is connected to the bus through
a hub the device enumeration process starts. Each hub
provides an IN endpoint, which is used to inform the host
about newly attached devices. The host continually polls
on this endpoint to receive device attachment and removal
events from the hub.

Once a new device was attached and the hub notified the
host about this event, the USB bus driver of the host enables
the attached device and starts requesting information from
the device. This is done with standard USB requests which
are sent through the default control pipe to endpoint zero of
the device. Information is requested in terms of descriptors.
USB descriptors are data structures that are provided by
devices to describe all of their attributes. This includes
e.g. the product/vendor ID, any device class affiliation,
and strings describing the product and vendor. Additionally
information about all available endpoints is provided.

After the host read all the necessary information from the
device it tries to find a matching device driver. The details of

this process are dependant on the used operating system. For
lack of space we are describing the process for Microsoft
Windows only but similar concepts apply to other operating
systems.

B. Device Driver Loading

After the first descriptors were read from the attached
USB device, the host uses the vendor and product ID from
the device descriptor to find a matching device driver. Win-
dows first tries to find the product/vendor ID combination
in the registry. If the device was successfully enumerated in
the past, a match is found in the registry which indicates the
associated device driver to be loaded. When no match in the
registry is found, Windows does a lookup in its database of
available device drivers which consists of a set of INF files.
Each INF file describes a set of devices for which device
drivers are available.

If neither the registry nor the INF files resulted in a
match for the product/vendor ID combination, Windows
tries to find a matching USB class driver. Class drivers
are not specific to a single device but can handle a broad
range of different devices which behave according to a class
specification. Most operating systems provide a set of USB
class drivers which allows some classes of USB devices to be
connected without the need to install a separate device driver.
The latest version of Windows comes with class drivers for
many of the defined USB classes [14], such as the mass
storage, audio or printer class.

To find a matching class driver, Windows uses the class,
subclass and protocol values read from the descriptors. The
same lookups as detailed above for the product/vendor ID
combination are performed.

After a matching device driver was found and loaded, it’s
the task of the device driver to select one of the provided
device configurations. The device driver selects one of the
configurations based on its own capabilities and the available
bandwidth on the bus and activates this configuration on
the attached device. At this point, all interfaces and their
endpoints of the selected configuration are set up and the
device is ready for use.

III. ATTACK SCENARIOS

In the case of the USB 2.0 standard [7], an attacker needs
physical access to a system. Although nearly every system
can be broken into with enough physical access, USB ports
represent a special case. Often the system itself together with
human interface devices, such as keyboards and mice, is
protected against unauthorized access. However, USB ports
are often considered safe to be provided to the user. In
some cases, USB ports must even be provided to the user
to accomplish the task of the respective system. USB-based
hardware security tokens are one example.

If the attacker is an employee of a company he is
trying to attack, he has lots of possibilities to unobtrusively



attach malicious USB devices. But even if the attacker
isn’t associated with the company to be attacked, there
are lots of cases, where the attacker himself doesn’t need
direct physical access but can get his malicious USB device
attached to the USB port of a system by other means.

People with legitimate physical access to a system could
be paid or bribed to act in the interest of the attacker. An
example could be any employee or facility staff member that
might have a financial interest.

Instead of bribery, people with legitimate physical access
could also be tricked to attach an attacker–supplied device.
When it comes to physical access, social engineering works
very well. An attacker can either just place a few attractive
or interesting looking USB devices in front of a company or
just send them directly by mail to the victim. Depending on
how much money the attacker has available for the attack,
the USB device can be in original package and could have
diverse appearances, ranging from a simple USB flash drive
up to an exclusive mobile phone with USB connectivity.

Another example where an attacker could trick other
people to attach a malicious USB device to a system of
interest is digital voting systems using so–called digital
voting pens [2]. This is a system to speed up vote counting
where each voter does his votes using a digital pen which
records the coordinates of the vote using a small camera
inside the pen. After the voter finished voting, the pen is
given back to the election supervisor, who in turn attaches
the pen to a USB docking station that is connected to the
computer system used to store all votes. An attacker could
either replace or modify the voting pen given to him, which
would then get attached to the host system storing all the
votes. A successful attack might then be used for election
fraud.

Finally, the requirement of physical access might change
with the Certified Wireless USB (CWUSB) extension [1]
that introduces wireless USB.

IV. ATTACK VECTORS

An enabled USB port provides various attack vectors for
a connected device. Potential attacks can go far beyond USB
stack and device driver attacks. Figure 2 gives a simplified
overview of the different components of a typical USB host
architecture. At the bottom, we have the electrical layer. Its
purpose is to encode and decode the electrical signals on the
wire. The electrical layer connects directly to the USB stack,
which is responsible for handling protocol details of the USB
protocol. Each device driver registers itself at the USB stack.
The only way a USB device driver can communicate with
an attached device is through the USB stack. Consequently,
the first attack target is the USB stack itself.

The name “Universal Serial Bus” already suggests that a
wide range of different classes of devices can be connected
through USB. To provide their service to an attached device,

Electrical layer

User-mode

Kernel-mode

Application

Application

Application

USB stack

Kernel subsystem

Kernel subsystem

Driver 1

Driver 2

Driver 3

Kernel subsystem

Kernel subsystem

Figure 2. Relation between components of the USB host architecture

in many cases USB device drivers don’t run in isolation but
communicate with various other kernel subsystem compo-
nents. For example, a USB network card driver makes use of
the network subsystem, while a mass storage device driver
utilizes the I/O and SCSI subsystem of the kernel. Even
when receivers for other protocols, such as IrDA, 802.11
or Bluetooth, are disabled, a connected USB device can
still pretend to be of the respective communications class
and, thus, get access to the protocol stacks otherwise not
reachable for external attacks.

Finally, USB devices are not exclusively connected to
kernel subsystems. Applications running in user–mode can
communicate with USB devices, e.g., to provide the interac-
tion with a user. Hence, data coming from a malicious USB
device can reach applications running in user–mode which
increases the attack surface even further.

V. IMPLEMENTATION

To practically find potential vulnerabilities in the compo-
nents listed in the previous section, we built a USB fuzzing
framework. This section discusses our design decisions and
implementation.

A. System Design

The first consideration when building a USB fuzzer is the
decision between a generation–based and mutation–based
fuzzer [13]. The effort to build a complete generation–based
fuzzer is comparable with the development of a new USB
device driver and, thus, could get very time–consuming.



Sticking to a mutation–based fuzzer releases us from the
task of emulating a USB device to get a specific device
driver loaded and fuzzed. We just attach the corresponding
device and modify the USB packets in transit. Consequently,
a mutation–based fuzzer is the preferred choice for quickly
getting first results.

To implement a mutation–based fuzzer we need a way
to intercept the communication between an attached device
and the USB host. The first option is to do the fuzzing
on the target host itself. A small kernel component could
be developed which would intercept the USB packets just
before they are delivered to the respective device driver to be
tested. Although this may be quickly implemented it has the
disavantage that it is platform-specific. The other problem is
that the fuzzing happens on the host we are trying to crash.

With the requirement that fuzzing should happen before
the USB packets reach the target host, there are two possibil-
ities. The first option is to utilize a hardware–based approach
which enables us to physicaly connect the USB fuzzer to the
target host. This would allow us to fuzz–test any device as
long as a USB port is provided. The disadvantage is that it
requires special–purpose hardware.

To overcome this limitation we chose the second option
and perform the fuzzing in an emulated environment inspired
by the work of Keil and Kolbitsch [9] for 802.11 wireless
fuzzing. The use of an emulated environment allows us
to do the fuzzing before the USB packets reach the host
but still gives us the freedom to build a software–only
solution. Additionally, we get all the benefits of fuzzing in
an emulated environment.

Besides the good automation and target monitoring ca-
pabilities of emulated environments one of the most useful
features for our task are virtual machine snapshots. These
allow us to store a snapshot of the current CPU, memory
and disk state which can be restored at a later point in time.
When fuzzing USB device drivers some systems were found
to disable the USB port after repeatedly attaching malformed
USB devices. To continue fuzzing in such a case, a reboot
of the target system would normally be required. Virtual
machine snapshots allow us to just restore to a known good
state and continue fuzzing.

Another problem with repeatedly attaching fuzzed USB
devices is the fact, that some memory corruption may not
result in an immediate crash of the target host. A crash could
happen at a later point in time triggered by some unrelated
event. This complicates the linking of encountered crashes
to a specific device attachment. To link each crash to one
specific attachment, virtual machine snapshots can be used
to restore a known good state after each attachment.

B. Architecture

To modify the USB communication between a USB
device and the host we propose the man–in–the–middle

architecture shown in Fig. 3. It’s based on three main
components:

1) Receiving Component
2) Processing Component
3) Device Emulation Component

The receiving component is responsible for acquiring the
USB packets from an attached USB device. It either talks
directly to the connected device or reads in a stored flow of
communication, which was recorded beforehand. All USB
packets are just forwarded between the USB device and the
processing component.

The processing component conducts the optional modifi-
cation or analysis of the USB communication. This is where
the actual fuzzing or analysis of the raw USB packets can
be implemented. The processing component can also record
a flow of communication and store it for replaying at a later
point in time. The processing component passes all the USB
communication between the receiving component and the
device emulation component.

The device emulation component forwards the USB com-
munication it received from the processing component to a
connected host system. From the perspective of the host, it
acts like the real USB device.

!"#"$%$&'(

#)*+)&"&,

-./(0"%$#" 123'",(4)5,

63)#"55$&'(

#)*+)&"&,

7"%$#"(

"*892,$)&(

#)*+)&"&,

:85,)*(

;8<<"3

Figure 3. Man–in–the–middle architecture

Our implementation is based on the QEMU machine
emulator [4]. QEMU can emulate a complete PCI UHCI
USB controller. Besides USB devices which are emulated
directly by QEMU, it also allows to pass–through physically
connected USB devices to the guest operating system. We
utilize this functionality and implement the receiving com-
ponent and the device emulation component directly into
QEMU as a set of patches. The final architecture is shown
in Fig. 4.

The receiving component passes on all USB packets
between a physical USB device and the processing com-
ponent. To get access to the physical USB device our
implementation makes use of QEMU which in turn uses
the USB device file system. This is a Linux file system
that provides all the needed hardware details of attached



USB devices to user–mode applications. To retrieve the
descriptors of an attached USB device, the corresponding
device files inside the mounted USB device file system can
be read. Communication with a device takes place using
ioctl() calls on the desired device file.

The dependance on QEMU for the receiving component
instead of using the USB device file system directly is
basically due to the fact that our current implementation is
heavily based around QEMU. To fully take advantage of the
modular design, future versions will make use of the USB
device file system directly.

HCD

USB device 

file system

Receiving component

Device emulation 

component

QEMU

Processing 

component

Target OS
USB fuzzer

USB device

Kernel-mode

User-mode

Figure 4. Design of the mutation–based fuzzing framework

The processing component is implemented externally as
a Python library which is connected to the receiving com-
ponent and the device emulation component using a set
of named pipes. All USB packets exchanged between a
USB device and the host are passed through the processing
component. The processing component doesn’t implement
any functionality itself but just provides simple Python
bindings for easy access to the raw USB packets. Those
bindings can be utilized by third–party extensions to easily
create custom fuzzers or analysis tools.

VI. EVALUATION

To evaluate our implementation we created a simple
fuzzer based on our framework which just randomly replaces
bytes in the USB packets exchanged between the device
and host. All IN packets are randomly selected for fuzzing

while OUT packets are ignored. For each selected packet,
a random number of bytes of the packet are replaced with
random values while the most significant bit of each byte is
set more frequently in the hope to trigger signedness issues.

As a fuzzing target we chose an Apple iPod Shuffle
device connected to a host system running Windows XP SP2
without additional patches. The only software additionally
installed was the latest release of Apple’s iTunes software2.
The iPod Shuffle identifies itself as a mass storage device
and, thus, is handled by the USB mass storage class driver
of Windows XP. The reason we chose this device instead
of some usual USB flash drive is because of the massive
communication taking place just after it is attached. After
the mass storage device is detected by the system the iTunes
software is launched by a service running in the background
which is installed as part of the iTunes application. The
loaded iTunes application then reads various information
from the device’s file system leading to multiple USB
packets being exchanged. Fuzzing those packets gives us a
good chance to reach various kernel components as well as
the iTunes service responsible for the detection of attached
iPods and the iTunes application running in user–mode.

The fuzz test consisted of repeatedly attaching the device,
letting the host talk to the device for some time and then
detaching it again. While doing this the state of the host
was monitored to detect any anomalies or crashes. All these
actions were performed using the Python API provided by
our fuzzing framework.

During the tests multiple bug checks were triggered
leading to a kernel crash. The crashes encountered were
triggered at various locations. While two of the kernel
crashes happened inside the USB host controller driver, one
crash was triggered in the USB mass storage driver and
another one was triggered in the file system code responsible
for reading the partition table from the attached device.
Additionally a crash in the user–mode iPod service binary
was triggered.

Although no deep analysis of the found crashes was
performed, at least one of them was caused by memory
corruption, making it probably exploitable. See Table I for
the complete list of found crashes.

Component Result
usbuhci.sys Kernel crash (Bug check 0xfe)
usbuhci.sys Kernel crash (Bug check 0xbe)
usbstor.sys Kernel crash (Bug check 0xc2)
disk.sys Kernel crash (Bug check 0x7e)
iPodService.exe Application crash

Table I
APPLE IPOD FUZZING RESULTS

2Apple iTunes 8.1.1.10 was used.



VII. RELATED WORK

The dominant focus of attention in respect to exploiting
memory corruption vulnerabilities in device drivers has been
on the realm of wireless communication. Several publica-
tions, such as [6] or [10], detail the complexity of 802.11
wireless device drivers and the resulting potential for vul-
nerabilities. Much effort has been put into the development
of IEEE 802.11 wireless fuzzers [5] to practically find
those vulnerabilities. While most publications concentrate
on device drivers for wireless protocols, Barrall and Dewey
showed in [3] that USB stacks and device drivers also
provide the potential for vulnerabilities. They demonstrate
their point with a vulnerability in USB related code of the
Windows operating system. No details were made public
though. Rafael Dominguez Vega continued research in that
direction and demonstrated the exploitation of a Linux USB
device driver bug in [17] using a custom-built USB device.
Details about the actual vulnerability being exploited were
not disclosed. He also described some first USB fuzzing
techniques.

The idea to use an emulated environment for fuzzing
802.11 wireless device drivers was first demonstrated by Keil
and Kolbitsch in [9]. They utilize the emulated environment
to circumvent the hard timing constraints when fuzzing
802.11 device drivers. The implementation of our USB
fuzzing framework is based on this idea.

Furthermore, first approaches towards exploiting drivers
drivers outside the wireless realm have been made: Ilja van
Sprundel showed in [16] how to utilize fuzzing to uncover
vulnerabilities in filesystem drivers. As the USB protocol
grants a malicious device direct access to the system’s
filesystem, van Sprundel’s work is of high relevance in the
context of this paper.

Finally, instead of exploiting implementation flaws in de-
vice drivers, Maximillian Dornseif demonstrated in [8] how
the use of DMA in FireWire empower an attacker to read
and write arbitrary physical memory of the host. Dornseif’s
work work was refined by Piegdon and Pimenidis in [12]
towards arbitrary code execution. Such attacks require the
device to be the controlling instance on the bus which is
in general not the case with USB. In the USB protocol
the host controls all communication on the bus. However,
David Maynor showed in [11] that DMA attacks against
USB are nevertheless possible by utilizing the USB OTG
extension [15] which allows USB devices to provide limited
USB host functionality to communicate directly with other
USB devices which would not be possible otherwise.

VIII. CONCLUSION AND FUTURE WORK

In this paper we discussed security implications of the
Universal Serial Bus. After raising the awareness by listing
potential attack scenarios, we explored the large attack
surface provided by enabled USB ports. Subsequently, we
described our implementation of a mutation–based USB

fuzzing framework utilizing an emulated environment. By
using a fuzzer together with an iPod Shuffle device we
demonstrated that USB device drivers not only provide
the potential for vulnerabilities but can also be used as
a stepping stone to trigger vulnerabilities in other kernel
components not directly related to USB and even in user–
mode applications communicating with attached devices. To
find those vulnerabilities we used a simple random–based
fuzzer without any knowledge of the underlying protocols
being fuzzed. It is to be expected that the development of
more intelligent fuzzers will result in even better results. We
paved the way for the development of such fuzzers with our
fuzzing framework.

Although we exclusively focused on attacks against the
USB host in this paper, the presented framework can also
be applied in reverse direction to fuzz test physical USB
devices, such as smartphones or PDAs. This might provide
a potential area for future research.

Despite the fact that fuzzing in an emulated environment
provides various benefits, the actual exploitation of a vulner-
ability in a real–world scenario requires the use of hardware
which emulates a physical USB device. Further research into
the creation of a separate hardware–based device emulation
component is required.

Another area of interest for future research is the Certified
Wireless USB (CWUSB) extension [1]. One of the design
goals of the wireless USB specification is to keep the
current software infrastructure including all the USB device
drivers intact. Wireless USB provides a wireless transport
mechanism for the USB protocol and, thus, makes attacks
against USB even more interesting since physical access is
no longer required. In this context, CWUSB’s mechanisms
used for authentication and encryption should be analyzed
for their effectiveness.

REFERENCES

[1] Agere, Hewlett-Packard, Intel, Microsoft, NEC, Philips, and
Samsung. Wireless Universal Serial Bus Specification 1.0,
May 2005.

[2] Joerg Arzt-Mergemeier, Willi Beiss, and Thomas Steffens.
The Digital Voting Pen at the Hamburg Elections 2008:
Electronic Voting Closest to Conventional Voting. In E-Voting
and Identity, volume 4896/2007 of LNCS. Springer, 2007.

[3] Darrin Barrall and David Dewey. ”Plug and Root,” the USB
Key to the Kingdom. Presentation at Black Hat USA, July
2005.

[4] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In ATEC’05: Proceedings of the USENIX Annual
Technical Conference 2005, page 41. USENIX Association,
2005.

[5] Laurent Butti. Wi-Fi Advanced Fuzzing. Presentation at
Black Hat Europe, 2007.



[6] Johnny Cache and David Maynor. Device Drivers: Don’t
build a house on a shaky foundation. Presentation at Black
Hat USA, August 2006.

[7] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC,
and Philips. Universal Serial Bus Specification 2.0, 2000.

[8] Maximillian Dornseif. 0wned by an iPod. Presentation at
PacSec, November 2004.

[9] Sylvester Keil and Clemens Kolbitsch. Stateful Fuzzing of
Wireless Device Drivers in an Emulated Environment. White
Paper, Secure Systems Lab, http://www.iseclab.org/papers/
fuzz qemu.pdf (2009/05/17), September 2007.

[10] David Maynor. Device Drivers 2.0. Presentation at Black Hat
DC, February 2007.

[11] David Maynor. 0wn3d by everything else: USB/PCMCIA
Issues. Presentation at CanSecWest, May 2005.

[12] David R. Piegdon and Lexi Pimenidis. Targeting Physi-
cally Addressable Memory. In Robin Sommer Bernhard
M. Haemmerli, editor, Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA 2007), volume 4579 of
LNCS. Springer, July 2007.

[13] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing:
Brute Force Vulnerability Discovery. Addison-Wesley, 2007.

[14] USB Implementers Forum, Inc. Approved Class Specifi-
cation Documents. http://www.usb.org/developers/devclass
docs (2008/05/22).

[15] USB Implementers Forum, Inc. On-The-Go Supplement to
the USB 2.0 Specification, 2006.

[16] Ilja van Sprundel. Fuzzing: Breaking Software in an Au-
tomated Fashion. talk at the 22th Chaos Communication
Congress (22C3), http://events.ccc.de/congress/2005/fahrplan/
attachments/582-paper fuzzing.pdf, December 2005.

[17] Rafael Dominguez Vega. ”USB Attacks: Fun with Plug and
0wn. Presentation at Defcon 17, August 2009.

http://www.iseclab.org/papers/fuzz_qemu.pdf
http://www.iseclab.org/papers/fuzz_qemu.pdf
http://www.usb.org/developers/devclass_docs
http://www.usb.org/developers/devclass_docs
http://events.ccc.de/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf
http://events.ccc.de/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf

	Introduction
	Technical Background
	Device Enumeration
	Device Driver Loading

	Attack Scenarios
	Attack Vectors
	Implementation
	System Design
	Architecture

	Evaluation
	Related Work
	Conclusion and Future Work
	References

