
USB Device Drivers

A Stepping Stone into your Kernel

Moritz Jodeit, Martin Johns

2

Agenda

•USB intro

•Motivation

•Attack surface

•Vulnerability identification

–Hardware-aided approach

–Emulated environment

•Crash analysis

•Some findings

•Conclusion

3

Who we are?

•Martin Johns <martin.johns@sap.com>

–Senior Security Researcher at SAP

•Moritz Jodeit <moritz.jodeit@nruns.com>

–Bug hunter / security researcher

–Security Consultant at n.runs AG

mailto:martin.johns@sap.com
mailto:moritz@jodeit.org

4

USB intro

5

USB concepts

•Host / device

•Enumeration

•Descriptors

•USB lingo

–Endpoints

–Pipes

–Interfaces

–Configurations

6

USB overview

7

Motivation

•Social engineering attacks

•Gain access to locked workstations

–USB device enumeration starts even while
workstation is locked!

•Digital voting pen

•Wireless USB (CWUSB)

•Unprotected USB ports…

8

Motivation

9

Attacks

•Data leakage

•AutoRun malware

–U3 flash drives

•Malicious USB mouse/keyboard

•OS attacks

–LNK vulnerability

•Bugs in USB stacks and device drivers

–PSJailbreak

10

Attack surface

11

Vulnerability identification

•Hardware fuzzer

•USB over IP

•Emulated environments

12

Hardware fuzzer

•Direct connection to target

–No middle layer which could influence results

–Embedded devices can be fuzzed

•Disadvantages

–Fuzzing target might stop responding

•Fuzzing EP0 on Windows XP (SP2)

–Inflexible during development

13

USB over IP

•Use of USB over IP bridge

•Easy access to raw USB packets

–Existing fuzzers / fuzzing frameworks can be used

–USB hardware sniffer

•All bridges we know of require software on
the host :(

•Hardware USB-IP-USB bridge anyone?

14

Emulated environments

•Good target monitoring capabilities

•Virtual machine snapshots

–Quickly recover non-responding target

–Easy way to reproduce crashes

•Use of high level languages

•(Interesting) side effects…

15

…bugs in virtualisation software

16

Fuzzing

•Generation-based fuzzing

–Time consuming

•New device firmware

–Good code coverage

•Mutation-based fuzzing

–Good for first quick results

–USB man-in-the-middle fuzzing

17

Fuzzing in emulated environments

•First approach

–Implemented as a patch to Qemu

–Complete fuzzing logic implemented in python

–Easy development of custom fuzzers

18

Fuzzing in emulated environments

19

Fuzzing in emulated environments

•Current framework centered around Qemu

–Nothing restricts us to Qemu

•We also implemented a more generic
prototype

–Based on the same three components

20

Universal man-in-the-middle fuzzer

•Based on USB device file system

•All USB communication passes through usbfs
(/proc/bus/usb)

•Syscall interception (ptrace)

–Fuzz data before it is passed to the virtualisation
software

•Universal solution (Qemu, Vmware, …)

–No modifications needed

21

Universal man-in-the-middle fuzzer

•Automic device attachment/detachment

–Qemu

•usb_add host:0123:4567

•usb_del host:0123:4567

–Vmware

•No VIX API available (AFAIK)

•Re-attachment can be triggered by starting/stopping
the VM

22

Universal man-in-the-middle fuzzer

23

Crash analysis

•Reproducing a triggered crash

–Re-apply the same modifications

•Based on packet number received from host

•Works best for crashes in enum phase

•Doesn‘t really work for crashes after hundreds of
packets beeing exchanged…

–Replaying the whole communication

•Works with easy protocols (e.g. HID)

•Breaks with mass storage devices

24

Evaluation

•Apple iPod Shuffle

–Mass storage device (talking SCSI)

–Lots of communication after attachment

–User-mode software (iTunes, iPodService.exe)

–Software available on many systems

25

Apple iPod Shuffle

•Connected to Windows XP (SP2)
•Double-free of kernel pool memory in usbstor.sys

•Kernel pool memory corruption in disk.sys
–While reading the partition table

•Two unclassified bug checks in usbuhci.sys
•Crash in iTunes iPodService.exe
–NULL pointer deref

26

Various other devices

•Microsoft LifeCam VX-1000

–Kernel oops on Ubuntu 9.04

•NULL pointer deref in SN9C102 driver

–NULL pointer deref on Windows Vista (SP2)

•Inside vx1000.sys driver

•Various USB flash drives

–NULL pointer deref on Windows Vista (SP2)

•Inside the usbhub.sys driver

–Call to NULL function pointer

27

Conclusion

•Fuzzing in emulated environment seems like
the right approach

•Reproduction of crashes can be hard
sometimes

•Potential for more vulns to be discovered

–More intelligent fuzzing

–3rd party drivers?

28

Questions?

•Code will be published when ready…

–Drop us a line, if you want to be notified

 (moritz.jodeit@nruns.com)

