
USB Device Drivers 

A Stepping Stone into your Kernel 

Moritz Jodeit, Martin Johns 



2 

Agenda 

• USB intro 

• Motivation 

• Attack surface 

• Vulnerability identification 

– Hardware-aided approach 

– Emulated environment 

• Crash analysis 

• Some findings 

• Conclusion 



3 

Who we are? 

• Martin Johns <martin.johns@sap.com> 

– Senior Security Researcher at SAP 

• Moritz Jodeit <moritz.jodeit@nruns.com> 

– Bug hunter / security researcher 

– Security Consultant at n.runs AG 

mailto:martin.johns@sap.com
mailto:moritz@jodeit.org


4 

USB intro 



5 

USB concepts 

• Host / device 

• Enumeration 

• Descriptors 

• USB lingo 

– Endpoints 

– Pipes 

– Interfaces 

– Configurations 

 



6 

USB overview 



7 

Motivation 

• Social engineering attacks 

• Gain access to locked workstations 

– USB device enumeration starts even while 
workstation is locked! 

• Digital voting pen 

• Wireless USB (CWUSB) 

• Unprotected USB ports… 



8 

Motivation 



9 

Attacks 

• Data leakage 

• AutoRun malware 

– U3 flash drives 

• Malicious USB mouse/keyboard 

• OS attacks 

– LNK vulnerability 

• Bugs in USB stacks and device drivers 

– PSJailbreak 

 



10 

Attack surface 



11 

Vulnerability identification 

• Hardware fuzzer 

• USB over IP 

• Emulated environments 



12 

Hardware fuzzer 

• Direct connection to target 

– No middle layer which could influence results 

– Embedded devices can be fuzzed 

• Disadvantages 

– Fuzzing target might stop responding 

• Fuzzing EP0 on Windows XP (SP2) 

– Inflexible during development 



13 

USB over IP 

• Use of USB over IP bridge 

• Easy access to raw USB packets 

– Existing fuzzers / fuzzing frameworks can be used 

– USB hardware sniffer 

• All bridges we know of require software on 
the host :( 

• Hardware USB-IP-USB bridge anyone? 

 



14 

Emulated environments 

• Good target monitoring capabilities 

• Virtual machine snapshots 

– Quickly recover non-responding target 

– Easy way to reproduce crashes 

• Use of high level languages 

• (Interesting) side effects… 



15 

…bugs in virtualisation software 



16 

Fuzzing 

• Generation-based fuzzing 

– Time consuming 

• New device firmware 

– Good code coverage 

• Mutation-based fuzzing 

– Good for first quick results 

– USB man-in-the-middle fuzzing 



17 

Fuzzing in emulated environments 

• First approach 

– Implemented as a patch to Qemu 

– Complete fuzzing logic implemented in python 

– Easy development of custom fuzzers 



18 

Fuzzing in emulated environments 



19 

Fuzzing in emulated environments 

• Current framework centered around Qemu 

– Nothing restricts us to Qemu 

• We also implemented a more generic 
prototype 

– Based on the same three components 

 

 

 



20 

Universal man-in-the-middle fuzzer 

• Based on USB device file system 

• All USB communication passes through usbfs 
(/proc/bus/usb) 

• Syscall interception (ptrace) 

– Fuzz data before it is passed to the virtualisation 
software 

• Universal solution (Qemu, Vmware, …) 

– No modifications needed 

 



21 

Universal man-in-the-middle fuzzer 

• Automic device attachment/detachment 

– Qemu 

• usb_add host:0123:4567 

• usb_del host:0123:4567 

– Vmware 

• No VIX API available (AFAIK) 

• Re-attachment can be triggered by starting/stopping 
the VM 

 



22 

Universal man-in-the-middle fuzzer 



23 

Crash analysis 

• Reproducing a triggered crash 

– Re-apply the same modifications 

• Based on packet number received from host 

• Works best for crashes in enum phase 

• Doesn‘t really work for crashes after hundreds of 
packets beeing exchanged… 

– Replaying the whole communication 

• Works with easy protocols (e.g. HID) 

• Breaks with mass storage devices 



24 

Evaluation 

 

 

 

• Apple iPod Shuffle 

– Mass storage device (talking SCSI) 

– Lots of communication after attachment 

– User-mode software (iTunes, iPodService.exe) 

– Software available on many systems 



25 

Apple iPod Shuffle 

• Connected to Windows XP (SP2) 
• Double-free of kernel pool memory in usbstor.sys 

 
 
 
 
 
 

• Kernel pool memory corruption in disk.sys 
– While reading the partition table 

• Two unclassified bug checks in usbuhci.sys 
• Crash in iTunes iPodService.exe 

– NULL pointer deref 
 



26 

Various other devices 

• Microsoft LifeCam VX-1000 

– Kernel oops on Ubuntu 9.04 

• NULL pointer deref in SN9C102 driver 

– NULL pointer deref on Windows Vista (SP2) 

• Inside vx1000.sys driver 

• Various USB flash drives 

– NULL pointer deref on Windows Vista (SP2) 

• Inside the usbhub.sys driver 

– Call to NULL function pointer 



27 

Conclusion 

• Fuzzing in emulated environment seems like 
the right approach 

• Reproduction of crashes can be hard 
sometimes 

• Potential for more vulns to be discovered 

– More intelligent fuzzing 

– 3rd party drivers? 



28 

Questions? 

• Code will be published when ready… 

– Drop us a line, if you want to be notified 

 (moritz.jodeit@nruns.com) 


