
Evaluating Security

Aspects of the

Universal Serial Bus
Moritz Jodeit
University of Hamburg

2009/01/13



Agenda

� Introduction to USB

� Attack scenarios

� Attacks
� Logical attacks

� Application-level attacks
� Stack and device driver attacks

� Kernel subsystem attacks

� Implementation of a USB fuzzer

� Results

� Future work

0x01



USB Intro

� Serial cable bus

� Wide range of peripherals

� Hot swapping

� Power can be provided by the host

� Standardized by the USB-IF
� HP, Intel, LSI, NEC, Microsoft

� Latest spec is USB 3.0
� Research based on USB 2.0

0x02



USB Architecture

� USB devices
� Hubs
� Functions

� USB host
� Controls the communication on the bus

� Detection of device attachment/removal
� Configuration of new devices

� Only a single host per bus
� All transfers initiated by the host

� USB interconnect
� Tiered star topology

0x03



0x04



USB Communication Flow

� Endpoints
� EP number

� EP direction (IN/OUT)

� Pipes
� Unidirectional

� Bidirectional
� Two EP‘s with same EP number

� Default control pipe (EP0)

� Interfaces
� Multiple pipes

� More than one can be provided at the same time („composite device“)

� Configurations
� Multiple interfaces

� Only a single configuration can be active

0x05



0x06



USB Bus Protocol

� Token-based packet protocol

� Employs polling mechanism

� Data transferred using transactions

� Transaction consists of multiple packets
� Token packets

� Initiation of a transaction by the host

� Contain device address + endpoint number

� Data packets

� Actual data transmission

� Handshake packets

� Acknowledgement of transaction

0x07



USB Bus Protocol

� Packet flow of a transaction
� Host sends token packets on a scheduled interval
� Every connected device reads initial token packet

� Specified EP on device receives packet

� Depending on token packet type, data packet is send
� IN token packets request the device to send a data

packet to the host

� OUT token packet request the device to receive the
next data packet sent by the host

� Receiver of data packet acknowledges reception with
a handshake packet

0x08



USB Enumeration

� Starts when device is attached at a hub

� Hub notifies host about event

� Host requests from hub to enable device

� Device has default address 0
� Provides default control pipe (EP0)

� Host configures attached device
� Standard USB requests to EP0

� Host assigns unique device addres
� Device now only answers to new address

0x09



USB Enumeration

� Host requests various descriptors

� Descriptors

�Data structures provided by device

�Describe all attributes of device

�USB spec defines some standard descriptors

�Vendor specific descriptors are possible

0x0a



USB Enumeration

� Host tries to find matching device driver

�Based on received descriptors

� Loaded device driver selects configuration

� Device provides all interfaces/EP‘s

0x0b



Attack Scenarios

� Hardware security tokens

�Lot‘s of them based on USB

� Implemented for higher needs of security

� Kiosk print systems

�Unattended and not actively monitored

� Employees (insiders)

�Good knowledge of internal processes

0x0c



Attack Scenarios

� Bribery

�Ask your friendly janitor ;)

� Trick people with legitimate access

�A few well-placed USB devices in front of a 

corporate building

�Send shiny new devices by mail as a present

� Who would reject a brand new iPhone?

�Electronic voting systems using digital pens

0x0d



0x0e



Attacks

� Logic attacks

� Application-level attacks

� USB stack and device driver attacks

� Kernel subsystem attacks

0x0f



Logic Attacks

� Malicious HID devices

�HID class driver provided by any OS

�HID device can act as a mouse/keyboard

�Can perform anything a user could do

�Could even be remotely controlled

� Certified Wireless USB (CWUSB)

0x10



Logic Attacks

� Windows AutoRun

�Executable can be launched

�Disabled for USB storage devices on XP/Vista

�CD-ROM drives can still make use of it on XP

�We can easily build a USB CD-ROM device

� U3 flash drives provide mass storage + CD-ROM

� ISO filesystem can be modified

0x11



Logic Attacks

� USB packet sniffer

�Token-based packet protocol

�Every connected device can see all packets

send by the host

� Token packets

� Data OUT packets

�Device could capture ALL received packets

� Files transfered from host to flash drive

� Documents printed on USB printer

0x12



Logic Attacks

� USB packet sniffer

�USB is also used to connect internal devices

� IEEE 802.11

� Bluetooth

� …

�Device can sniff outgoing wireless traffic

� Encryption on the wireless link is bypassed

�This presumes, that the same bus is used

0x13



Application-Level Attacks

� Apple iTunes and iPods

�USB connector since 3rd generation

�Attach as mass storage devices

�Filesystem contains iTunes control data

� iTunesHelper applications detects iPods

� Launches iTunes when iPod is connected

� iTunes parsers could be attacked

0x14



Application-Level Attacks

� OS X Quick Look
� Used to display thumbnails / preview images

� Used by Finder / Spotlight

� Applications request previews of specific files

� Quick Look daemon

� Running in background

� Receives requests from user applications

� Supports various file formats

� Lot‘s of parsers with lot‘s of code

� Fuzzing already showed some promising results ;)

� Opening mounted USB flash drive using the Finder

0x15



Stack and Device Driver Attacks

� USB stack
� Handles low-level protocol details
� Loads matching device drivers

� Hardened systems with minimal set of device drivers
can be attacked

� USB device drivers
� Significant number of different drivers

� Lot‘s of drivers developed by 3rd parties
� Varying code quality can be expected

� Class drivers available on nearly every system

0x16



Kernel Subsystem Attacks

� USB = Universal Serial Bus

� Large number of different devices

� Device drivers make use of other kernel components
� Disk subsystem

� Network subsystem

� Audio/video subsystem

� Various protocol stacks!

� IrDA, 802.11, Bluetooth, …

� Does all this code handle malformed data?
� Answer is „no“, as we‘ll see later ;)

0x17



Implementation of a USB Fuzzer

� Prerequisites

1. Fuzzing should be automatic

2. Should be able to send malformed data

3. Implemented in software

4. Should be able to emulate various devices

0x18



Implementation of a USB Fuzzer

� Linux-USB Gadget API Framework

� Allows embedded Linux systems to act in 

the USB device role

� Peripheral controller + gadget drivers

� Multiple USB peripheral controller drivers

� Netchip 228x, AMD5536 UDC, Renesas

M665992,…

� DummyHCD

0x19



Implementation of a USB Fuzzer

� Linux-USB Gadget API Framework

� Some gadget drivers included

� USB ethernet device

� Mass storage device

� Serial device

� MIDI device

� GadgetFS module for user mode drivers

0x1a



Implementation of a USB Fuzzer

� First approach

�Emulate USB device in software

� DummyHCD

�Use virtualization solution to fuzz guest OS

�Problems encountered

� Emulated device is handled by host OS and 

virtualization first!

� These additional layers can prevent attachment

0x1b



0x1d



Implementation of a USB Fuzzer

� Second approach

�Emulate USB device in software

�But use a hardware solution to connect to the

host to be tested

�Netchip NET2280 peripheral controller

� PCI evaluation board

0x1d



0x1e



Implementation of a USB Fuzzer

� PoC fuzzer implemented in the peripheral
controller driver of the NET2280

�Every loaded gadget driver is fuzzed

�Restriction to available gadget drivers

�Time-consuming to add new gadget drivers

� Most bugs found using this PoC

�But we wanted a more universal solution…

0x1f



Implementation of a USB Fuzzer

� Final design
� Man-in-the-middle mutation-based fuzzer
� Still in development

� Components
� Receiving component

� libusb

� Processing component
� Fuzzing + replaying

� Device emulation component
� Gadget framework

0x20



0x21



0x23



Results

� Fuzzing USB mass storage driver

� Repeatedly attached mass storage device

� Randomly fuzzed all IN transactions on all pipes

� Randomly replaced bytes with random ones

� Most significant bit set more often

� Crashes where reproduced using the packet number

� Led to some non-reproducible crashes

� Tested: Windows XP/Vista, OS X, Linux, OpenBSD

0x23



Results

� Windows XP (SP2)

�Multiple crashes encountered

� Not all of them could be reproduced

�Double-free of kernel pool memory in 

usbstor.sys

�Kernel pool memory corruption in disk.sys

while reading the partition table

�Fuzzing on EP0 disabled the whole USB 

functionality until a reboot
0x24



Results

� Mac OS X
� Complete lockup of the system

� When time between re-attachments was too small

� No kernel panic screen shown

� Reset of the system restored behaviour

� One other kernel panic was produced

� Unfortunately was not reproducible

� OpenBSD
� Kernel panic in SCSI subsystem

0x25



Results

� Windows Vista & Linux

�No crashes encountered

�We did only scratch the surface

� Only a single class driver tested

� Dumb random-based fuzzing

� Accidental finding…

0x26



Results

0x27



Future Work

� Method used to reproduce crashes
� New implementation allows replaying

� Finish the MITM approach to test 3rd party 
drivers
� Re-implement device emulation component?

� PoC of the USB sniffing attack
� Only theoretical for now

� Certified Wireless USB (CWUSB)
� Authentication and encryption

0x28



Questions?


