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Abstract—Static analysis of source code is considered to be
a powerful tool for detecting potential security vulnerabilities.
However, only limited information regarding the current quality
of static analysis tools exist. A public assessment of the capabil-
ities of the competing approaches and products is not available.
Also, neither a common benchmark nor a standard evaluation
procedure has yet been defined. In this paper, we propose a
general methodology for systematically evaluating static analysis
tools. We document the design of an automatic execution and
evaluation framework to support iterative testcase design and
reliable result analysis. Furthermore, we propose a methodology
for creating testcases which can assess the specific capabilities of
static analysis tools on a very fine level of detail. We conclude
the paper with a brief discussion of our experiences which we
collected through a practical evaluation study of six commercial
static analysis products.

I. INTRODUCTION
A. Motivation

The majority of today’s security problem arise because
of code-based vulnerabilities such as buffer overflows, SQL
injection, or cross-site scripting (XSS) [4]. Consequently, the
discipline of secure programming has been gradually shifted
into the focus of many software producing entities. To help
developers to find security bugs in their code, static analysis
approaches which examine source code for vulnerabilities have
been proposed. Furthermore, due to increasing demand in
this area, several commercial products have been successfully
introduced in the last years. However, the actual quality of
the provided analysis is in large parts unknown. Especially,
commercial tools are black boxes. Up to this day, no common
benchmark has been defined and only very few public evalu-
ation efforts have been undertaken — with NIST’s SATE [20]
project being one of the first steps in this direction.

B. Technical background

The BCS SIGIST defines static analysis of source code
as the “analysis of a program carried out without executing
the program” [24]. This definition emphasizes the contrast
to dynamic analysis, where the behaviour of program is
observed while it is executed. Analogously, a static analysis
for security describes a class of programs which take source
code as input and aim to find potential security problems in this
code. Static analysis is not exclusively used for finding security
problems. Applications can also be found, for instance, in
compiler optimization or improvement of general code quality.
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In general, static analysis problems are undecidable [11].
Thus, no analysis can be sound and complete. This means that
a static analysis program is either unable to reliably detect all
targeted problems or is prone to false positives, i.e., it reports
findings which turn out to be wrong on closer examination. A
further discussion about the implications and necessary trade-
offs is given in [28] and [2]. In practice, most tools expose
both variants of erroneous behaviour.

Available static analysis for security programs exist in the
form of freeware [26], [25], [22], academic prototypes [5], [2],
[12], [23], [16], [8], company-internal tools (e.g., Microsoft’s
Prefast and Prefix [6], [13]), and commercial products (see
[18] for an overview).

II. EVALUATING STATIC ANALYSIS TOOLS

A. Evaluation criteria

Before discussing existing and future approaches towards
evaluating static analysis tools, it has to be decided which
attributes and characteristics should be considered. Chess and
West [3] list the following four criteria in this context:

{C.1} Quality of the analysis. The quality of a given tool’s
analysis depends on the capabilities and precision of a
tool’s engine in respect to finding the targeted insecu-
rities. This is determined by factors, such as language
feature coverage, false negative rate (number off missed
cases), false positive ratio (number of false alerts per
true finding), or comprehension of non-trivial control-
and data-flows.

Implemented trade-offs between precision and scal-
ability. Such trade-offs directly affect analysis time,
false positive rate, and detection capabilities. For in-
stance, depending on time- or memory constraints
security flaws which in theory could be detected by
a tool’s engine are missed because the analysis was
terminated prematurely.

Set of known vulnerability types. It has to be mea-
sured, if the tool is aware of all relevant types of
potential, code-based vulnerability types.

Usability of the tool. This is a mostly non-technical
requirement. In the context of this paper, we do not
consider usability aspects.

(c2}

{c.3}

{C4}

For the remainder of this paper, we will reference these four
criteria to assess discussed evaluation approaches.



B. Existing approaches towards benchmarking

In general there are three approaches towards practically
evaluating the quality of a static analysis tool for security. They
mainly differ in the choice of source code which is utilized
within the evaluation.

Real-world, vulnerable software: In general, applying a
static anylsis tool to a non-trivial, real-world software project
which contains at least one previously known security vulnera-
bility is the first approach towards assessing its quality. Typical
candidates for such an evaluation are large-scale open source
applications, such as Sendmail or WU-FTPd. For example,
Livshit’s SecuriBench [14] follows this approach.

This evaluation method has several shortcomings. For one,
the only available success criteria is to verify that the the
previously known vulnerability was detected by the tool.
However, in cases in which the vulnerability was not found,
there is no indication why the test failed. Was the tool simply
not capable to comprehend the causing controlflow (criterion
C.1)? Was the vulnerability hidden too deep in the call-stack,
so that the analysis terminated prematurely (criterion C.2)?
Or is the given vulnerability type simply not contained in the
tool’s set of targeted bug classes (criterion C.3)? Analogously,
even if the vulnerability was found, there is also only little
evidence how or why the test succeeded. Consequently, the
amount of knowledge about a tool’s capabilities that can be
gained using this approach is limited.

Besides checking for alerts which may stand in direct
relation to the previously known insecurity, the further option
is to investigate the additional warnings that the tool reported
in respect to the source code. For each of these warnings, it can
be examined, if the finding indeed constitutes a vulnerability
or a mere false positive. While this process would provide
insight concerning the tool’s false positive rate, to do so is
very time consuming and potentially error-prone.

Furthermore, assessing the tool’s coverage of known vulner-
ability types (criterion C.3) is difficult to achieve. It is unlikely
to find a real-world application that contains instances of all
applicable vulnerability classes. Consequently, it is necessary
utilize several applications. This in turn multiplies the already
significant benchmarking effort.

Finally, this approach offers no indication on false negatives
in respect to yet unknown vulnerabilities in the source code.

Nonetheless, this approach is well suited to assess the run-
time behaviour of the tool (criterion C.2) in respect to realistic
application complexity.

Educational applications: Several testing applications exist
which have been written to contain security problems on pur-
pose, e.g., OWASP’s WebGoat [21], or Foundstone’s Hacme
series [17]. In general, they are designed as self-contained
applications which often mimic a well-known use case, e.g.,
an online banking site. These applications are mainly used
for educational practices, teaching developers about software
security practices by exposing them to vulnerable code. The
developer can interact with the application and, this way, try
to find and exploit the crafted vulnerabilities.

Compared to real-word applications, using the source code
of such programs for evaluation purposes can offer some slight
advantages. For one, educational applications provide a fairly

comprehensive coverage of vulnerability types (criterion C.3).
For example, WebGoats’s webpage lists more then 12 distinct
bug classes [21]. Consequently, applying a static analysis tool
to WebGoat’s code might offer insight, if the tool masters these
individual vulnerability types.

Furthermore, the ration between true vulnerabilities and
lines-of-code is usually rather high while the software’s overall
complexity is comparatively low. In addition, the source code’s
documentation probably emphasis on the included vulnerabil-
ities. All of this helps to assess the manual inspection of the
analysis results.

Micro benchmarking suites: Finally, the third option is the
usage of a specifically designed micro benchmarking suite.
Such test suites consist of a set of mini-tests which each
contain one or more security vulnerabilities. In contrast to
educational applications, these suites are written specifically
to evaluate static analysis tools. Hence, they do not represent
complete applications. They are not even necessarily exe-
cutable [27].

Micro benchmarks allow fine-grained probing for specific
individual analysis capabilities (criterion C.1). Furthermore,
testing for coverage of vulnerability classes (criterion C.3) is
not an issue. This level of control over the tested features
provides the designer of the suite with the capability to execute
an investigation of a tool’s analysis engine. E.g., if a test
fails, the test can be iteratively modified to examine the reason
which caused the failure.

Also, the only source code contained in such suites either
represents a testcase or is necessary to host the test. No further
user interface or application logic exists. This results in a
small lines-of-code total and a very high vulnerability ratio.
These characteristics carry the significant benefit that manual
inspection of a tool’s report is feasible with moderate effort.

However, in consequence, the overall complexity of the
resulting test programs is lower compared to real-life applica-
tions. This limits obtaining evaluation results in respect to run-
time behaviour and scalability/precision trade-off (criterion
C.2) which may be encountered under realistic circumstances.

For the reasons listed above, we chose to design a testing
methodology which is based on micro benchmarking suites.

C. Objectives

We regard the following characteristics to be essential for a

systematic evaluation system:

1) Targeted testing of individual capabilities: Our goal
is to learn as much as possible about a tool’s strengths
and weaknesses. Hence, a targeted testing for individual
capabilities of a given tool has to be feasible. We propose
to achieve this through designing single purpose testcases
which have a very narrow, clearly defined scope. A
single testcase should ideally test only for one specific
characteristic. Consequently, the proposed benchmarking
system should support the creation and evaluation of a
large set of individual testcases.

We will discus our approach towards testcase design in
depth in Section IV of this paper.

2) Easy, correct, and iterative testcase creation: The
quality of the utilized testcases determines the overall



quality of the complete evaluation. For this reason, it
is of great importance that the testcode is correct. Le.,
it has to be verified that testcode which was designed
to contain a specific vulnerability is indeed vulnerable.
Otherwise, the validity of the complete benchmarking
effort is questionable if the correctness of the tests is
in doubt.

More precisely, our evaluation system should allow the
creation of testcases that are short and as human readable
as possible. Furthermore, the system should support man-
ual verification of the existence/absence of the targeted
vulnerability. Only manual verification provides a suitable
level of confidence for our purpose.

3) Automatic test execution and result evaluation: Re-

peatedly running a given tool can be a complex, time
consuming, and tedious task. However, during testcode
development, it is advisable to iteratively run the bench-
marked tools against the originating test suite. This way,
early mistakes and pitfalls, that might occur during test-
code development, can be detected and avoided. Also,
an extension and modification of the benchmarking suite
should be easily possible. This way, the test code can
be adapted and refined according to earlier results. Thus,
the tools can be benchmarked in depth through follow-up
tests.
For this reason, we regard it as essential, that the actual
test execution and the evaluation of the resulting reports
is automated. As such an approach makes running the
benchmarking system cheap for the developer, it allows
convenient, iterative testcode development. Furthermore,
such an approach provides an evaluation of the tool’s
reports which is neutral and free of human error.

In the following sections, we discuss how our approach
satisfies the here stated objectives.

III. SCANSTUD: TEST METHODOLOGY

In this section we discuss how we designed our Scanstud
framework to fulfill the in Sec. II-C stated objectives.

A. Reliable result evaluation through dedicated applications

Automating the evaluation of a tool’s reports is not trivial.
The main challenge is to correctly map the tool’s individual
findings to the crafted vulnerabilities which are contained in
the test code.

Simply matching the line number of the reported finding
with the line number of the vulnerability is not sufficient: A
specific vulnerability’s line number in the source code is not al-
ways obvious. Take for example Listing 1 which exemplifies a
common cause for off-by-one vulnerabilities in C. Which line
should be reported? Line 3 in which the off-bounds writing
operation is located? Or line 2 which hosts the causing, faulty
bounds-check? Both choices would be reasonable. However,
if the creator of the tool decides that line 2 should be reported
while the benchmarking system checks if line 3 is flagged, the
benchmarking system is unable to notice whether the tool in
fact correctly detected the vulnerability.

srcl[i] &&
= srcli];

l...

2| for (i = 0; (1 <= sizeof(dst)); i++) {
3 dst [1i]

4
5

[...]

Listing 1. Off-by-one vulnerability caused by insecure loop condition

Therefore, a mapping mechanism that does not rely on line-
numbers is crucial. We achieve this as follows: Every testcase
is hosted in a separate, dedicated application. This application
contains only one single testcase, either a true vulnerability or
a crafted false positive. Within this application’s source code
we differentiate between the festcode and the host program.
The host program is a stub which contains all necessary
components to promote the testcode to a parsable, compilable
and executable application.

The host program is designed to be completely error free.
This should result in an absence of warnings in respect to
source code portions that are not part of the testcode. Conse-
quently, any finding that a tool alerts has to be directly related
to the testcode. Hence, if a tool detects a problem, the crafted
vulnerability was correctly found with a very high probability
(or the intended false positive was alerted). Obviously, sanity
checking of tool’s warnings has to be applied, e.g., for cases
in which a tool falsely detects a completely wrong bug type
or more than one vulnerability is reported. Applied to the
example of Listing 1, as long as the tool reports an off-by-one
error for the tested application, the testcase is considered to
be detected correctly.

B. Removing false positives caused by the host program

In theory, the evaluation methodology outlined above pro-
vides an elegant way to assess a tool’s output. However, in
practise, there is a common problem: No matter how much
effort is dedicated for removing all possible suspicious code
portions from the host program’s code, the tendency to report
false positives of certain tools may still result in unnecessary
warnings which are not related to the testcase.

To address this problem, we implemented a simple, yet
effective pre-processing step, called Scanstud Diff, to isolate
the false positives and other noise caused by the host program.
We create two versions of the test application, one containing
the testcode and one in which the testcode is omitted or
replaced by something harmless. Both applications are pro-
cessed by the to-be-evaluated static analysis tool. The resulting
reports are compared. All findings which occur in both reports
are necessarily caused by the host program’s code which
is identical for both applications. Thus, these warnings are
removed from the report. Consequently, the remaining findings
are reliably caused by the testcode.

C. Automatic creation of test applications

The separation between testcode and host program has an
additional benefit. The actual testcode is comparatively small
and clearly defined. As motivated in Section II-C, it is crucial
to ensure that the testcode correctly contains the targeted
vulnerability. As all support code, which is necessary to create
a complete application is placed in the host program, the
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Fig. 1. Automatic test application assembly

designer of the source code can fully focus on creating the
testcase.

To take full advantage of this, our approach proposes the
usage of an universal host program which is utilized by all
test applications. Such a host program contains all the support
infrastructure which is required by the testcases. For instance,
in the case of our C-language test suite (see Section V-A2),
the host program provides a simple TCP server that reads
untrusted data from an open socket and passes this data to
the testcases.

The testcases are kept separately in small template files.
These files only contain the code which is directly associated
with the testcase. The host program contains clearly defined
markers in which the testcode is inserted (see Fig. 1). A
small assembly script combines the template files and the host
program into the test applications. This way, a large number of
dedicated test applications can be created effortlessly. Further-
more, the actual testcase’s code is small and of manageable
complexity, enabling the testcase designer to achieve a high
level of confidence regarding the test’s correctness.

D. Support for manual verification

We emphasised in Section II-C the importance of practical
verification of a testcase’s vulnerability. For this reason, the
host program should be executable and provide means to
interact with the testcode. This way, the testcase designer can
practically trigger the crafted vulnerability to ensure that he
indeed wrote insecure code. Especially, with complex vulner-
abilities which utilize non-trivial data- and control-flows, such
a manual verification step is crucial.

For instance, in our Java-language test suite (see Sec. V-A1l),
every test application is indeed a full J2EE application, which
exposes the testcode in the form of an servlet. Furthermore,
the host program provides a suiting HTML frontend which
allows the designer to directly access the vulnerability.

E. Summary: The Scanstud testcode assembly architecture

Each testcase is assembled by combining the testcode with
the host program. The resulting application is passed on to
the to-be-evaluated static analysis tool, which is integrated
into the automatic testing infrastructure by a tool wrapper.
The analysis’ result is diffed against the scan result of the
benign host program in order to remove potential noise from
the analysis. Then the result is recorded for the final evaluation.

This infrastructure allows unobserved, automatic execution
and evaluation of the benchmarking effort. Furthermore, fo-
cused testcase development is fostered through the separation
between test and support code.

IV. SCANSTUD: TESTCODE

A. Testcase design

Within our approach we differentiate between the terms test
and testcase:

e A testcase is the smallest unit in our approach. It is
designed to check for a single, specific capability of
the tested tool, e.g., “does the tool detect unsanitized
data which is routed through an array?” (see Listing 2).
A testcase is passed if the vulnerability was correctly
found or, respectively, if the intended false positive was
correctly ignored.

e A test consists of one or more testcases. These testcases
are compiled to determine if the tested tool does master
a specific concept, e.g., “does the tool understand the
semantics of dataflows which are routed through an
array?” A test is passes when all belonging testcases were
passed.

To illustrate this distinction, consider the array example of
Listing 2: To determine if the tested tool actually correctly
comprehends the given dataflow, the testcase sketched in
Listing 2 alone is not sufficient. For instance, a tool that
simply alerts all print 1n-calls with non-constant parameters
to be potentially vulnerable! would also alert this case without
correctly analysing the array semantics. Therefore, to establish
whether a tool correctly understands the given dataflow, we
also have to test if properly sanitized data entered in the same
dataflow remains unannounced (see Listing 3). A “dumb” tool
that alerts all println-calls would falsely flag this snippet
to be potentially vulnerable, thus, showing that the array data-
flow indeed was ignored. In this example, the two exemplified
testcases together constitute one single fest. The test in only
passed, if both testcases are interpreted correctly, i.e., the
vulnerable code is alerted and the false positive is ignored.

String[] arr = new String[2];
arr[0] = request.getParameter ("data");
response.println(arr([0]);

// unsanitized
// XSS wvuln.

w

Listing 2. Exemplified testcase: Vulnerable dataflow through an array
1| String[] arr = new String[2];
2| arr[0] = HTMLEncode (request.getParameter ("data"));

3| response.println(arr[0]); // safe

Listing 3. Exemplified testcase: Safe dataflow through an array

More generally: Whenever applicable, a given fest consists
of two testcases both checking the same capability. One
represents a true vulnerability, the other one a false positive.
This way it can be ensured, that the true finding was not found
by accident but indeed because the tool interpreted the source
codes semantics correctly.

For instance, tools such as Rats [22], Flawfinder [26], or ITS4 [25] check
for suspicious API calls and, e.g., flag every single occurrence of strcpy.



B. Testcase categories

In the context of a tool evaluation with our testing frame-
work, a given test falls into one of the following categories:

« It tests either for the completeness of the tool’s set of
known vulnerability types,

« for the degree of the provided language coverage,

o or for the capability to comprehend the semantics of
specific control- and dataflows.

In the remainder of this section we briefly explore these
three categories. Please note: These categories are not mutually
exclusive. A given test may include characteristics from more
than one class. However, as our framework aims to provide
fine-grained insight concerning a given tool’s functioning, it
is important that the designer decided what the focus of the
given testcase is.

1) Vulnerability class coverage: This is the most basic test
category. Using simple testcases, it is verified that the tool
indeed checks for the probed class of security vulnerabilities.
Le., we check whether the tool alerts bug classes such as buffer
overflows, off-by-one errors, format string vulnerabilities in C
programs, or XSS, SQL Injection, etc. in Java applications.

For this purpose, the testcases should contain a represen-
tative of the bug class in its “purest form”. This means, the
testcode should contain the minimal set of instructions which
would cause such a vulnerability, omitting all sophisticated
language features which might cause the tool to fail the
analysis.

Example: See Listing 4 for our testcase concerning buffer
overflows in C. Please note, that even this simple testcase
requires the tool to master two concepts which are not directly
related to the probed bug class. For one, the tool has to com-
prehend the semantics of the strcpy-method. Furthermore,
the tool has to be capable to do basic interprocedual reasoning,
as the untrusted data is passed through the argument xbad.
In the context of our benchmarking effort, we consider it to
be reasonable to assume that a mildly advanced static analysis
tool for security possesses both capabilities.

1| void buffer_overflow_test (char xbad) {

2 char buf[1024];

3 strcpy (buf, bad);

40}

Listing 4. Simple buffer overflow coverage testcase

2) Language feature coverage: Testcases in this category
actively examine if a tool understands basic features of the
targeted programming language. Such features include, for
instance, the semantics of native datatypes, the functioning
of methods provided by the standard library, or the effects of
advanced language features, e.g., inheritance or scoping.

A test in this category is designed as follows: To test if a
tool understands a given language feature, the corresponding
testcase utilizes this language feature within a source code
that contains a vulnerability. Inclusion of a vulnerability in
the testcase is necessary as the evaluated tools are specifically
designed to find security problems.

Hence, a basic vulnerability type which is contained in the
tool’s set of know bugs is chosen. Using our methodology
explained in Sec. IV-A, two testcases are created using an
instance of this bug: The first testcase is vulnerable. The

second testcase, in most parts, consist of exactly the same
source code as the first testcase, with the only difference that
the vulnerability is fixed. Both testcases contain the targeted
language feature as a necessary component in their code. If
the tool finds the vulnerability and ignores the safe variant,
it is reasonable to assume that the semantics of the examined
language feature are understood by the tool. See Listings 2
and 3 for an example which probes if the tool comprehends
arrays.

This category of tests is very important to assess potential,
unexpected side effects: If a tool does not understand language
feature X then it is not able to correctly interpret all further
testcases which utilize X. This is especially problematic with
testcases that were designed to probe for a tool characteristic
(for instance Y) which is not related to language feature X.
If the testcode uses X, the testcase fails even though the tool
may actually understand Y.

Example: During our practical evaluation of our framework
(see Sec. V) we tested a commercially available static analysis
tool which claimed to find web application related security
problems in Java source code. However, during our tests
the tool was not able to correctly alert a single instance of
our XSS testcases. This puzzled us, especially, as the tool
otherwise exposed decent results. After further investigation,
the source of the problem was isolated: Our XSS testcases used
J2EE’s response.getWriter ()-method for writing data
to the HTML output. However, the tool did not comprehend
this specific call. Fortunately, due to the compactness of our
actual test code and our framework’s support for repeated
and automated evaluation rounds, we were able to adapt
our testcode quickly. After we replaced all occurrences of
getWriter () with getOutputStream/ (), several of our
XSS testcases were alerted correctly. While the failure to
understand the getWriter () -method is a serious flaw of the
tool, the overshadowing and falsifying of the other testcases
which was caused by this was not desirable.

Consequently, if possible, such language coverage testcases
should be written and evaluated early, before the rest of the
benchmarking suite is designed. This way unwanted side effect
because of incomplete coverage of language features can be
avoided.

3) Control and dataflows: Tests contained in this category
are closely related to the former class of testcases which
check for language features. The here summarized tests aim to
assess a tool’s ability to comprehend non-obvious control- and
dataflows. Again, as it was the case with testing for language
features, the only way to test for such capabilities is to create
insecure source code which incorporates the targeted control-
or dataflow in its execution path. Therefore, it is necessary
to ensure that the evaluated tool is able detect the utilized
vulnerability class in the first place. We illustrate this point
(which also applies the language feature testcases) with a
further experience from our practical experiments: Within our
Java suite, we used XSS vulnerabilities in testcases which
probed for the ability to assess non-trivial dataflows. However,
one of the evaluated tools did not check for web application
specific vulnerabilities, such as XSS. For this reason, a subset
of our testcases was not applicable for this specific tool.
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Fig. 2. Testcase design

We propose the construction of tests within this category
to be conducted as follows: First a basic vulnerability class
is chosen, which is triggered when an untrusted, attacker-
controlled value is used in a security sensitive context. For
instance, XSS bugs for web applications and formatstring
vulnerabilities for C programs are suiting candidates. The
constructed testcase contains two data sources, i.e., variables
which are filled with dynamic values. One of the sources is
safe, this means the dynamic value is properly sanitized and
the other source is unsafe, i.e., controlled by the attacker.
Furthermore, the code has one sink, a variable that ends up
being used within the potentially security sensitive construct.
Then, a control- or dataflow is constructed containing the
targeted characteristic. Both sources enter the execution flow.
Within this flow, one of the sources is assigned to the sink,
while the other is either discarded or used in a security
insensitive context. Depending on which of the both sources
gets assigned to the sink, the testcase is a true vulnerability
or a potential false positive (see Listing 5 and see Fig. 2
for examples). Only if the tool correctly comprehends the
execution flow which is used within the test, it is able to pass
both testcases.

String bad
String good
3| String result

req.getParameter ("testpar");
HTMLEncode (req.getParameter ("testpar"));

nu.
7

1
2
3
4
5] int il = 0O;
6
7
8

for (int i2 = 0 ; i2 < 10 ; 1i2++){
il += 1;
}
9| if (11 == 9) {
10 result = bad;
1|} else {
12 result = good;

// X882

}
14| writer.println ("<h3>" + result + "</h3>");

Listing 5. Testcase to evaluate if loop invariants are calculated

Such tests include for instance:

o Controlflow: Calculation of loop invariants, cascading
conditionals, dead code detection, interprocedual execu-
tion flows, handling of side effect of object state, or
exception handling.

o Dataflow: Flows through local and global buffers, pointer
arithmetic, aliasing, data flow through local classes (e.g.,
custom linked lists), or second order code injection
through temporary, local storage.

We consider these tests to be most significant when it comes
to assess the actual analysis capabilities of a given tool. While
shortcomings in bug class and language feature coverage
probably can be easily corrected in future versions of the tool,

the ability to correctly analyse sophisticated flows is a direct
characteristic of the underlying analysis engine. Furthermore,
a non-trivial program very likely contains numerous advanced
execution paths.

V. IMPLEMENTATION AND PRACTICAL EVALUATION

We implemented our benchmarking framework according
to the design considerations outlined in Section III. More
specifically, we created scripts for automatic testcode as-
sembly, tool execution, result diffing, and result evaluation.
Furthermore, we designed two test suites [7], one targeting
web application specific vulnerability classes in Java programs
and one containing C language specific vulnerabilities.

A. Language specific testing suites

1) Java suite: Our suite of tests in the Java programming
language was designed as follows: The host program consists
of a J2EE web application. This application contains a single
servlet. Within this servlet a small number of placeholders
exist which function as insertion points for source code from
the testcase templates. Within these templates, the actual test-
cases is encapsulated in Java classes which export the method
doTest (). During the evaluation process, the framework
iteratively uses the individual testcase templates and merges
them with the host program into a complete and compilable
application source code.

Most of web application specific bug classes, such as
XSS or SQL injection, occur because of insecure dataflows.
Consequently, the majority of the testcases contained in this
suite target non-trivial dataflows. In total, the suite consists of
85 testcases (or 49 tests respectively).

2) C suite: In general, the C suite was designed similar to
the Java suite. The host program is a simple TCP server which
reads data from a socket and passes pointer to test code. It
consists of less then 100 lines of code.

Within C programs, the majority of vulnerabilities arise
due to memory mismanagement problems. For this reason,
the C language test suite emphasises on such problems.
Thus, we designed testcases concerning bug types such as
buffer overflows, unlimited/Off-by-one pointer loop overflows,
integer overflows/underflows, signedness bugs, or null pointer
dereferences. In total, the suite consists of 116 testcases (or
57 tests respectively).

B. Practical experiences

To verify the practical applicability of our approach, we
conducted an extensive evaluation study of several competing
tools.

The majority of the freely available tools either only test
for a very narrow set of bug classes (e.g., [5], [23], [2]) or do
not possess sufficient capabilities for interprocedual analysis
(e.g., [26], [25], [22], [5]) which is a necessary prerequisite for
our testing methodology (see Sec. IV-B). Consequently, these
tools were not suitable to test-ride our framework.

Therefore, we chose a set of commercial static analysis
products as candidates for the project. Unfortunately, due to



the various agreements which we had to sign with the tool’s
vendors, we are not at liberty to publish the results of this
study. However, we do not consider the exact results to be
terribly interesting. They only document a snapshot of the
current capabilities which is outdated with the next releases of
the individual tools. Instead, in the remainder of this section
we briefly document our general experiences in respect to
the evaluation process. Furthermore, as we have published the
source code of our testing framework and our testcases [7],
interested parties can run our benchmarks themselves.

Out of a starting set of 12 potential candidates we selected
the 6 most promising tools for further investigation. This
selection was based on preliminary testing which was done
to obtain a first impression regarding analysis quality.

Some brief observations on analysis quality: In the
remainder of this section we list selected observations, to
exemplify potential insights which can be gained using the
proposed methodology?:

As expected, the tools exposed individual strength and
weaknesses in respect to analysis quality. In general, a ten-
dency to favour false positives over false negatives could be
observed. It appeared in some cases, that when in doubt certain
tools opted for a warning as default behaviour, which is a
reasonable policy from a security point of view.

Furthermore, we could make the following observations:
Within our C suite, tests containing double-frees and null-
pointer dereferences were passed by most tools, However,
most tools had significant problems with non-trivial integer
overflow vulnerabilities. Concerning Java testcases, a general
area of strength was the tracking of dataflows within a single
function. However, dataflows that left the local scope often
caused problems. For instance, non of the tools was able to
pass tests involving a custom-written linked list object (see
Listing 6).

class Node {
public
public

String value;
Node next;

W -

}

Listing 6. Custom linked list object used in testcases

VI. RELATED WORK

best knowledge, the first systematic

study concerning static analysis for
security was conducted by Wilander and Kamkar in
2002 [27]. Within their study, they utilized a micro
benchmark which consisted of a single C file containing
a total of 23 insecure and 21 safe API calls. No tests for
language feature coverage or advanced analysis capabilities
were included.

Conceptually closest to our approach are the micro bench-
marking suites by Livshits [15] and Kratkiewicz [9]. Both are
well designed suites, consisting of numerous small testfiles.
[15] targets analysis tools for web application vulnerabilities
by providing a total of 96 testcases encapsulated in Java
classes. The majority of the provided tests aim to asses the

To our
benchmarking

2NB: These observations were initially made early 2008. As we shared our
results with the vendors, it is likely that the identified shortcomings have been
addressed in the mean time.

evaluated tool’s capabilities for language feature coverage.
[9] exclusively focuses on buffer overflows in C applications.
For this purpose, the suite consists of 291 tests, modeling
buffer overflows in all imaginable variations. Compared to our
approach, neither [15] nor [9] provide support for automatic
test execution or result evaluation.

Zitser et al. document in [29] an evaluation of four open
source and one commercial static analysis tool. Initially, the
authors aimed to utilize three large-scale real-world applica-
tions with disclosed vulnerabilities (BIND, WU-FTPD, and
Sendmail) for their project. However, early test-runs exposed
that some of the tools were not able to analyse the chosen test
applications due to non-trivial code constructs, such as custom
type definitions. For this reason, Zitser et al. implemented
14 small test applications with sizes ranging between 90
to 800 lines of code. These applications were designed to
closely model existing vulnerabilities from the initially chosen
set of test applications. This was done by extracting just as
much code as it was required to reproduce the respective
vulnerability. Analogous to our approach, each test applica-
tion was implemented both in a vulnerable and in a safe
variant. Their proposed approach towards testcode assembly
is compelling. It is situated in between evaluation using micro
benchmarks and real-life software. However, it still has to
be shown that all relevant characteristics of static analysis
tools can be assessed this way. Furthermore, compared to
our approach, creating testcases requires significantly more
effort: Real-life vulnerabilities have to be found, analysed, and
extracted. Finally, it is debatable if modeling the test after
existing vulnerabilities has actual advantages over completely
crafted testcases.

In [10] Ku et al. briefly document a benchmarking suite
which was designed following Zitser et al.’s approach. The
suite consists of a total of 298 test based on 22 analysed
vulnerabilities from 12 programs. The suite was designed to
help the development of a novel analysis tools. Hence, no
information of general evaluation methodology or results have
been published.

In 2008 the NIST initiated the first Static Analysis Tool Ex-
position (SATE) [1], a public evaluation project which invited
authors and vendors of static analysis tools to participate. The
stated goals of the evaluation were to enable empirical research
based on large test sets, to encourage improvement of tools,
and to speed adoption of the tools by objectively demonstrating
their use on real software. For this purpose, SATE chose
six real-life open source applications with expected security
vulnerabilities and at least several thousand lines of code, as
analysis targets — three written in C, three written in Java.
Furthermore, a common XML dialect for the participating
tool’s reports was defined.

SATE ended in May 2008 with the sending of the tool’s
reports to the organisers. However, it took more than a year
to publish the final assessment of these reports [20]. The
reason for this delay was that the preparation of the final
evaluation took longer than anticipated. This way, the SATE
project indirectly supports our claim that manual inspection
and evaluation of non-trivial result-sets produced by static
analysis tools demands significant resources and, thus, is



not suitable for benchmarking efforts. In comparison, our
evaluation mechanism allows unobserved, automatic report
assessment. As our testcases are small and well defined,
manual investigation is only necessary in limited, conspicuous
cases. However, subjective criteria can better be solved through
manual report evaluation, e.g., estimating if the utilized warn-
ing levels concerning the findings are appropriate.

In 2009, NIST undertook a second public tool evaluation
(SATE2009) [19]. Unlike the first attempt, this time only a
subsets of a tool’s warnings was chosen for further investi-
gation. This way, a timely analysis of the result set could be
achieved. However, the outcome’s meaningfulness is subject
to debate as not all warnings have been examined. In contrast,
our approach guarantees a full assessment of all warnings both
in respect to true findings and false positives.

VII. CONCLUSION

In this paper we presented Scanstud, a methodology for
systematic evaluation of static analysis tools for security. The
Scanstud methodology is twofold:

For one, it defines an automatic test execution and eval-
uation framework. In this framework, we achieve reliable
correlation between tool report and expected testcase answer.
This is done through encapsulating individual testcases in
dedicated applications and through clean separation of test and
support code.

Furthermore, Scanstud proposes a general approach towards
benchmarking suite design which relies on fine-grained, tar-
geted tests. A given test within Scanstud probes for an clearly
defined, singled-out characteristic of the evaluated tool. Such
characteristics include knowledge of vulnerability classes,
comprehension of language features, or possession of analysis
capabilities in respect to defined types of control/dataflows.
By combining two testcases within one test, in-depth insight
regarding the evaluated tool’s capabilities can be gained.

In conclusion, Scanstud offers sophisticated and flexible
capacities for tool evaluation combined with a high degree
of confidence in the obtained results. An wide adoption of our
methodology would benefit identifying existing limitations in
the current state of the art in static analysis and, hence, foster
further improvements in this area.
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