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ScanStud: Project overview 

Mission statement 

 Investigating the state of the art in static analysis 

Project overview 

 Practical evaluation of commercial static analysis tools for security 

 Focus on C and Java 

 Done in 2008 

 Joint work with the Siemens CERT 
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The disappointing slide  

What we WON’T tell you: 

 The actual outcome of the evaluation 

 Even if we wanted, we were not allowed (NDAs and such) 

But:  

 We do not consider the precise results to be too interesting 

 An evaluation as ours only documents a snapshot 

 and is outdated almost immediately  

However: 

 We hopefully will give you a general feel what can be assessed in respect to the capabilities 

of static analysis tools 



So, what will we tell you 

This talk is mainly about our evaluation methodology 

 How we did it 

 Why we did it this specific way 

 General infos on the outcome 

 Things we stumbled over 

 



What makes a static analysis tool good? 

It should find security problems 

 Knowledge of different types of code based security problems 

 E.g., XSS, SQLi, Buffer Overflow, Format String problems... 

 Language/Framework coverage 

 E.g., J2EE servlet semantics, <string.h>,... 

 Understanding of flows  

 Control flow analysis (Loops invariants, integer ranges) 

 Data flow analysis (pathes from source to sink) 

 

Control flow graph Call graph 
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General approaches towards benchmarking 

Approaches 

1. Use real world vulnerable software 

2. Use existing or selfmade vulnerable application  

 Hacme, Web Goat, etc... 

3. Create specific benchmarking suite 

Our goal and how to reach it 

 We want to learn a tool’s specific capabilities 

 E.g., does it understand Arrays? Does it calculate loop invariants? Does it understand 

inheritance, scoping,...? 

 Approaches 1. + 2. are not suitable 

 Potential side effects  

 more than one non-trivial operation in every execution path 

 Writing custom testcode gives us the control that we need  

However the other approaches are valuable too 



Mission Statement 

Objectives 

 Easy, reliable, correct, and iterative testcase creation 

The actual test code should be  

short 

manual tested 

as human readable as possible 

 Defined scope of testcases 

 A single testcase should test only for one specific characteristic  

 Automatic test-execution and -evaluation 

 Allows repeated testing and iterative testcase development 

 “neutral” evaluation 

[Let’s start at the bottom] 

 

 



Automatic test-execution 

Approach 

 Test-execution via batch-processing 

Problem 

 All tools behave differently 

Solution 

 Wrapper applications 

 Unified call interface 

 Unified XML-result format 

  



Automatic test-evaluation 

Required 

 Reliable mapping between alert and testcode 

Approach 

 One single vulnerability (or FP) per testcase 

 Every testcase is hosted in an application of its own 

 The rest of the application should otherwise be clean 

Benefits 

 Clear relation between alerts and testcases 

 Alert => the case was found / the FP triggerd 

 No alert => the case was missed 



Real world problem 

Noise 

 Even completely clean code can trigger warnings 

 The host-program may cause additional alerts  

 How do we deterministically correlate scan-results to test-cases?  

 Line numbers are not always applicable. 

Solution 

 Result-Diff 

 Given two scan results it extracts the additional alerts 

 Scan the host-program only (== the noise) 

 Scan the host-program with injected testcase (== signal + noise) 

 Diff the results (== signal)  



Testcase creation  

Approach  

 Separation between  

 general support code and 

 test-specific code (the actual vulnerabilities) 

Benefit 

 Support code is static for all testcases 

 The actual testcase-code is reduced to the core of the tested property 

 Minimizes the code, reduces error-rate, increases confidentiality  

 Allows rapid testcase creation 

 Enables clear readability 

Implementation 

 Code generation 

 Host-program with defined insertion points 

 Testcode is inserted in the host-program 



Testcode assembly 

Insertion points in the host program 

 Library includes, Global structures/data, function-call to the test function 

The test-case is divided in several portions 

 Each portion corresponds to one of the insertion points 

A script merges the two files into one testcase 

 

 

 

 

 

 

 



Example testcase(s): Buffer overflow 

DESCRIPTION:  Simple strcpy() overflow 

ANNOTATION:   Buffer Overflow [controlflow] [] 

 

EXTERNAL_HEADER: 

#include <string.h> 

 

VULNERABLE_CALL: %NAME(v)%(p); 

 

VULNERABLE_EXTERNAL_CODE: 

/* %DESCRIPTION(v)% */ 

void %NAME(v)%(char *p) { 

 char buf[1024]; 

 strcpy(buf, p); /* %ANNOTATION(v)% */ 

} 

 

SAFE_CALL: %NAME(s)%(p); 

 

SAFE_EXTERNAL_CODE: 

/* %DESCRIPTION(s)% */ 

void %NAME(s)%(char *p) { 

 char buf[1024]; 

 if (strlen(p) >= sizeof(buf)) 

  return; 

 strcpy(buf, p); /* %ANNOTATION(s)% */ 

} 



Final testing infrastructure 

Components 

 Tool wrappers 

Host-program 

 Test-cases 

 Assembly script 

Result differ 

 Evaluator 

Putting it all together 

Creates test-code with  
the assembly-script 

Causes the wrapped tool  
to access the test-case 

 Passes the test-result to  
result differ 

Diffed-result and meta-data  
are finally provided to  
the Evaluator   



Conclusion: Test-code generation  

Summary 

 Applicable for all potential languages 

 Applicable for all tools that provide a command-line interface 

 Flexible 

 Allows deterministic mapping code <--> findings 

Fallback: Combined suite 

 For cases where the tool cannot be wrapped  

 All testcases are joined in one big application  
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Testcases versus Tests 

A testcase is the smallest unit in our approach 

 Contains code which should probe for exactly one result 

 Either “true vulnerability” or “false positive” 

A test usually consists of two testcases 

 a true vulnerability and  

 a false positive 

 Both testing the same characteristic 

A test passed only if BOTH associated testcases have been identified correctly 



Testcase design 

Language features and control/data flow  

 Two variables (“good”, “bad”)  The sources 

 Both are filled with user provided data 

 The “good” variable is properly sanitized 

 One sink variable (“result”) 

 This variable is used to execute a security sensitive action 

 Both variables are piped through a crafted control flow 

 One of them is assigned to the result variable  

 

 

 

Memory corruption 

 Similar approach  

 Instead of variables different sized memory regions are used 



C test cases 

Host program 

 All C test cases are hosted in a simple TCP server 

 Listens on a port and waits for new clients 

 Reads data from socket and passes pointer to test case 

 Less than 100 LOC 

The suite 

 Emphasis on vulnerability types 

 Around 116 single C test cases in total 

Tests for, e.g.,  

 Buffer overflows, unlimited/Off-by-one pointer loop overflows, integer overflows/underflows, 

signedness bugs, NULL pointer dereferences 

 



The Java suite 

Host program 

 J2EE application with only one servlet  

 Provides: DB connection, framing HTML content, sanitizing,... 

Vulnerability classes 

 XSS, SQLi, Code Injection, Path Traversal, Response Splitting 

Emphasis on testing dataflow capabilities 

 ~  85 Java testcases in total 

 Ben Livshit’s Stanford SecuriBench Micro was very helpful  

Language features 

 Library, inheritance, scoping, reflection, session storage 

Tests 

 Global buffers, array semantics, boolean logic, second order code injection, ... 
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Tool selection 

Market research: 12 potential candidates 

 Selection criteria:  

 Maturity 

 Is security a core-competence of the tool? 

 Language support 

  Selection of 10 tools 

  After pre-tests 6 tools were chosen for further investigation 

 (no, we can’t tell you which)  

 



Scoring 

We have ~ 200 unique testcases 

How should the results be counted? 

Observation 

 If it aids the detection reliability, false positives are tolerable 

Resulting quantification of the results 

 Test passed:  3 Points 

 False positive: 1 Point 

 False negative: 0 Points 

 



Result overview 

C Suite 

 

 

 

 

Java Suite 

Rank Tool Points

1. Tool a. 72 / 168

2. Tool b. 58 / 168

3. Tool c. 56 / 168

4. Tool d. 53 / 168

5. Tool e. 50 / 168

Rank Tool Points

1. Tool x. 89 / 147

2. Tool y. 66 / 147

3. Tool z. 58 / 147

4. Tool v. 53 / 147



Static analysis: C capabilities 

Categories covered by almost all tools: 

 NULL pointer dereferences 

 Double free’s 

Problem areas of most tools: 

 Integer related bugs 

 Integer underflows / overflows leading to buffer overflows 

 Sign extension bugs 

 Race conditions 

 Signals 

 setjmp() / longjmp() 

 Non-implementation bugs 

 Authentication, Crypto, Privilege management, Truncation, … 

 



Static analysis: Java Capabilities 

Strengths  

 Within a function all tools possess good capabilities to track dataflows 

 Besides that, the behaviour/capabilities are rather heterogeneous 

Problem areas of most tools 

 Global buffers 

 Especially if they are contained within a custom class 

 Dataflow in and out of custom objects 

 E.g., our own linked list was too difficult for all tools 

 

 

 

 

 Second order code injection  

class Node { 

   public    String value; 

   public    Node   next; 

} 



Static analysis: Anecdotes 

Buffer overflows 101: 

 Most basic buffer overflow case? 

 

 

 To our surprise, 3 out of 5 tools didn’t report this! 

 Too obvious to report? 

 One vendor was provided with this sample: 

    

 

 

 

 

 Vendor response: 

“argc/argv are not modeled to contain anything sensible. 

  We will eventually change that in the future.” 

int main(int argc, char **argv) { 

   char buf[16]; 

   strcpy(buf, argv[1]) 

} 

strcpy() 



Static analysis: Anecdotes 

Buffer overflows 101: 

 Another easy one: 

 

 

 Every tool must be finding that one! 

 Actually one tool didn’t 

 Vendor response: 

“Ooops, this is a bug in our tool.” 

gets(buf); 



Static analysis: Anecdotes 

More bugs: 

 One tool didn’t find anything in our “combined test case”: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Vendor response: 

“#include’ed files are not analyzed completely. 

  Will be fixed in a future version.” 

#include "testcase1.c" 

#include "testcase2.c" 

#include "testcase3.c" 

 

int main(int argc, char **argv) { 

  call_testcase1(); 

  call_testcase2(); 

  call_testcase3(); 

  return 0; 

} 



Fun stuff 

Let’s sanitize some integers 

 All tools allow the specification of sanitation functions 

 So did Tool Y 

 However the parameter for this function could only be 

 Int, float, ... 

 But not STRING! 

Don’t trust the servlet engine  

 The J2EE host program writes some static HTML to the servlet response 

 

 

 

 Tool X warned “Validation needed” 

 (are you really sure you want your data there?) 

 

PrintWriter writer = resp.getWriter(); 

writer.println("<h3>ScanStud</h3>"); 



More fun and bugs 

One of the tools did not find a single XSS problem 

 This surprised us, as the tool otherwise showed decent results 

 Reason: We used the following code 

 

 

 But the tool did not know “getWriter()” 

 After replacing it with “getOutputStream()” XSS was found 

Somewhat overeager  

 Our SQLi tests exclusively used SELECT statements 

 While detecting the vulnerability, the tool Z also warned 

   “stored XSS vulnerability”  

 

PrintWriter writer = resp.getWriter(); 



A special price: The noisiest tool 

We had a tool in round one that did not understood neither C nor Java 

 Therefore we started a C# benchmarking suite  

 After three written testcases we did a first check 

 2 XSS (vulnerable/safe), 1 SQLi (vulnerable) 



The end 

 

 

Questions? 

 



 

 

�Appendix 



Potential pitfall 

Pitfall 

 Unbalanced creation/selection of testcases can introduce unsound results 

Example 

 Tool X is great but does not understand language feature Y 

 Therefore all tests involving Y fail 

 If there is an unbalanced amount of tests involving Y tool X has an unfair disadvantage 

Solution: Categories and tags 

 Categories: “controlflow”, “dataflow”, “language”,... 

 Tags: All significant techniques within the testcase 

 Example: [cookies,conditional,loops] 

 The it would be possible to see, that X allways fails with Y  



Interesting point  

Vendor X:  

 When there is a single path which includes an Array into a vulnerable data-flow, then the 

whole Array is tainted (even the safe values) 

 Underlying assumption: All elements of a linear data structure are on the same semantic 

level 

 This approach obviously breaks our test, to examine wether a tool understands Array 

semantics 



C suite 

Host program 

 All C test cases are hosted in a simple TCP server 

 Listens on a port and waits for new clients 

 Accepts client connections 

 Reads data from socket and passes pointer to test case 

 Less than 100 LOC 

Test cases 

 Around 116 single C test cases in total 

 10 tests to determine the general performance of each tool 

 Arrays, loop constructs, structures, pointers, … 

 Rest of the test cases represent real vulnerabilities, which could be found in the wild 



C suite (2) 

 Buffer overflows using simple unbounded string functions 

 strcpy, strcat, gets, fgets, sprintf, strvis, sscanf 

 Buffer overflows using bounded string functions 

 snprintf, strncpy, strncat, memcpy 

 Unlimited/Off-by-one pointer loop overflows 

 Integer related bugs 

 Integer overflows / underflows 

 Sign extension 

 Race conditions 

 Signals 

 setjmp() 

 TOCTTOU 



C suite (3) 

 C operator misuse 

 sizeof(), assignment operator, octal numbers 

 Format string issues 

 NULL pointer derefs 

 Memory management 

 Memory leaks 

 Double free’s 

 Privilege management 

 Command injection 

 popen(), system() 



SATEC – Test files 

The SATEC file format 

 Each test is kept in a separate file 

 The test is described using the following keywords 

 NAME (automatically generated from filename) 

 DESCRIPTION 

 ANNOTATION 

 Two code blocks 

 VULNERABLE_EXTERNAL_CODE 

 SAFE_EXTERNAL_CODE 

 Two calls, into the code blocks 

 VULNERABLE_CALL 

 SAFE_CALL 

 Keyword expansion is possible 



Example: T_001_C_XSS.java 

DESCRIPTION: Very basic XSS 

ANNOTATION: XSS [basic] [] 

 

VULNERABLE_CALL: 

  new %NAME(v)%().doTest(req, resp); // inserted by satec 

 

SAFE_CALL: 

 new %NAME(s)%().doTest(req, resp); // inserted by satec 

 

VULNERABLE_EXTERNAL_CODE: 

class %NAME(v)% extends scanstudTestcase { 

 

 public void doTest(HttpServletRequest req, HttpServletResponse resp){ 

 

  PrintWriter writer = resp.getWriter(); 

      String value = req.getParameter("testpar"); 

      writer.println("<h3>" + value + "</h3>");  // %ANNOTATION(v)% 

 } 

 

} 

  

SAFE_EXTERNAL_CODE: 

class %NAME(s)% extends scanstudTestcase { 

 

 public void doTest(HttpServletRequest req, HttpServletResponse resp){   

  PrintWriter writer = resp.getWriter(); 

  String value = HTMLEncode(req.getParameter("testpar")); 

      writer.println("<h3>" + value + "</h3>"); // %ANNOTATION(s)% 

 } 

} 


