
Diploma Thesis

Evaluating Security Aspects of
the Universal Serial Bus

Moritz Jodeit

Department of Informatics
University of Hamburg, Germany

http://www.informatik.uni–hamburg.de

First reader: Prof. Dr. rer. nat. Joachim Posegga
Second reader: Prof. Dr. Dieter Gollmann

December 16, 2008

Abstract

The widely–used Universal Serial Bus provides a physical attack vector, which has only been
considered in the past sparingly. Not only the lack of public research, but also the lack of
suitable tools makes it really hard to assess the security of provided USB ports. We first break
down the different attacks against the USB architecture into different categories. After describing
some theoretical attacks, we present our implementation of a USB fuzzer. To demonstrate its
effectiveness of finding new vulnerabilities in USB stacks and device drivers, we use it to fuzz
test the USB mass storage class driver of the various operating systems. The vulnerabilities we
find support our claim that the USB architecture provides a real attack vector and should be
considered when assessing the physical security of computer systems in the future.

Acknowledgements

This work would not have been possible without the help of many others. Special thanks to
Martin Johns for the guidance and the initial idea to work on this subject. I would also like to
thank Jeremias Reith for bouncing ideas back and forth when things got a bit stuck. Finally, I
would like to thank Miriam Tenten for her patience and tolerance while working on this thesis
paper, which helped me quite a bit in staying focused.

I would like to dedicate this thesis paper to my family.

1

Contents

1 Introduction 5

1.1 Overview . 6

1.2 Organization . 6

2 Technical Background 7

2.1 Universal Serial Bus . 7

2.1.1 Architecture . 8

2.1.2 Communication Flow . 8

2.1.3 Bus Protocol . 11

2.1.4 Transfer Types . 12

2.1.5 Descriptors . 13

2.1.6 Bus Enumeration . 16

2.1.7 Device Classes . 17

2.2 Software Vulnerabilities . 18

2.2.1 Buffer Overflows . 18

2.2.2 Double Frees . 26

2.2.3 Integer–related Bugs . 26

2.2.4 Format String Vulnerabilities . 29

2.3 Fuzz–Testing . 31

2.3.1 History . 31

2.3.2 Block–Based Fuzzing . 32

2.3.3 Input Data Creation . 32

3 USB Support in Selected Operating Systems 33

3.1 Linux . 33

3.1.1 Driver Architecture . 33

2

3.1.2 Enumeration . 38

3.1.3 Supported Class Drivers . 40

3.2 Mac OS X . 40

3.2.1 Driver Architecture . 41

3.2.2 Enumeration . 43

3.2.3 Supported Class Drivers . 44

3.3 Windows XP . 46

3.3.1 Driver Architecture . 46

3.3.2 Enumeration . 51

3.3.3 Supported Class Drivers . 53

3.4 Windows Vista . 53

3.4.1 Driver Architecture . 53

3.4.2 Enumeration . 56

3.4.3 Supported Class Drivers . 56

4 Attack Vectors 57

4.1 Attack Scenarios . 57

4.2 Classification of Attack Methods . 58

4.2.1 Logic Attacks . 60

4.2.2 Application–Level Attacks . 64

4.2.3 USB Stack and Device Driver Attacks . 66

4.2.4 Kernel Subsystem Attacks . 68

5 Implementation 70

5.1 Layers to be Fuzzed . 70

5.2 Implementation Prerequisites . 71

5.3 Design of the Fuzzer . 71

5.4 Implementation of each Component . 72

5.4.1 Device Emulation Component . 72

5.4.2 Processing Component . 73

5.4.3 Receiving Component . 74

5.5 Implementation Details . 75

5.6 Hardware Implementation . 76

6 Results 78

3

7 Conclusion 80

8 Future Work 81

4

Chapter 1

Introduction

The Universal Serial Bus (USB) is a widely–used serial cable bus for connecting different pe-
ripherals to a host computer. With the introduction of the Certified Wireless USB (CWUSB)
extension [1], USB can even be used on the wireless link. The scenario of a malicious USB device
has not really been considered until now1. Additionally, it is currently really difficult to assess
the security of all components participating in the USB implementation of the host. This is
particularly true for the USB stacks and device drivers.

One possibility for a first evaluation is the development of a USB fuzzer. A device such as this
would mostly conform to the USB specification, but deviate from it in different places, trying to
trigger bugs in the host’s implementation of the USB protocol. Additionally, such a device could
act in conformance to the USB specification, but violate the assumptions of the host about usual
USB devices. This could be used to find vulnerabilities, which are based on deviation from wrong
assumptions. A possible difficulty with such an approach is the actual design of the malicious
USB device. Since most of the available USB chips are probably trying to prevent the user from
violating the USB specification, a special–purpose hardware design could be required.

The largest potential for possible vulnerabilities inside host implementations of the USB protocol,
might be offered by USB device drivers. The security at the application–layer gets better and
better over time. Vulnerabilities like simple stack–based buffer overflows and format string bugs
are becoming less frequent. The availability of different fuzzing tools and frameworks decreases
the time it takes, to find new implementation vulnerabilities even more. Device drivers on the
other hand, are often developed by third–party companies and could vary largely in quality.
The design goal of maximum performance combined with the fact, that device drivers are often
developed under strict time frames, could easily result in security aspects being neglected.

Furthermore, a vulnerability inside a device driver has much higher consequences than a vulner-
ability inside some application running in user–mode, since most device drivers are running in
kernel–context. Any exploited vulnerability inside such a device driver could allow an attacker to
execute his code in the context of the kernel and thus gain full control over the attacked system.

1A notable exception being the presentation “Plug and Root” by Darrin Barrall and David Dewey from SPI
Dynamics at the Black Hat USA conference in 2005.

5

CHAPTER 1. INTRODUCTION 6

1.1 Overview

This thesis is a presentation of different security aspects of the Universal Serial Bus. We provide
an initial overview of the USB support in some of the major operating systems and describe in
detail, how new USB devices are enumerated and how device drivers are loaded. Subsequently,
we show some real world scenarios, how attacks might be accomplished by an attacker. After
motivating the feasibility of attacks using the Universal Serial Bus, we will develop a classification
of possible attacks and demonstrate some related attacks for each category. We will present our
implementation of a USB fuzzer and investigate the effectiveness of our approach by fuzz–testing
a USB device driver from different operating systems. We’ll conclude with a list of our findings
and some of the limitations of our approach.

1.2 Organization

We begin Chapter 2 with the introduction of some preliminary concepts, required for the un-
derstanding of the remaining thesis. It covers an overview of the USB protocol, followed by an
introduction to the most common classic software vulnerabilities. Finally, the concept of fuzzing
is explained. Chapter 3 provides an overview of the USB support in some of the major operating
systems. Chapter 4 then shows different real–world attack scenarios, and how the Universal
Serial Bus might be used for attacks. Following those scenarios, we classify attacks against the
USB architecture in four different classes. Some possible attacks are described for each class.
In Chapter 5, we present our implementation of a USB fuzzer to demonstrate some of the afore
mentioned attacks. We conclude the chapter with some thoughts about how to build a malicious
USB device in hardware. Chapter 6 lists some results found by fuzzing the USB stack of different
operating systems. In Chapter 8, we list some limitations of our current implementation and
show areas, where further research is needed. We conclude this thesis in Chapter 7.

Chapter 2

Technical Background

This chapter provides the technical background information necessary to understand the remain-
ing thesis. First, Section 2.1 provides a detailed overview of the USB standard. Starting with
the USB architecture, all the remaining main concepts of the USB standard relevant to this
thesis are described. Section 2.2 then introduces the most common classic software vulnerability
classes, used by attackers to compromise systems. After introducing stack–based buffer over-
flows, we delve in the internals of heaps and explain heap–based buffer overflows and double free
vulnerabilities. Integer–related bugs and format string vulnerabilities are covered at the end.
Finally, Section 2.3 introduces the concept of fuzzing, used throughout the thesis to find most of
the low–level vulnerabilities.

Even though this chapter provides the foundation for the remaining thesis, the well–versed reader
may of course skip this chapter in parts or entirely.

2.1 Universal Serial Bus

The Universal Serial Bus (USB) is a serial cable bus for the connection of a wide range of
peripherals to a host computer. It can connect devices such as mice, keyboards, printers or flash
drives. USB is intended to replace many of the serial and parallel legacy buses such as RS–232 or
PS/2. One of the design goals of the USB architecture was to provide a standard bus interface,
which could be shared by different kinds of devices. USB allows the attachment and removal of
devices without rebooting the computer, also known as hot swapping. Power can be provided by
the host to low–consumption devices without the need for an external power supply.

USB is standardized by the USB Implementers Forum (USB–IF). This industry standards body
includes leading companies such as Hewlett–Packard, Intel, LSI, NEC and Microsoft. The latest
USB specification as of this writing is the USB 3.0 specification [2], which was released at the
end of 2008. Since the release of the 3.0 specification was just a few days before the deadline for
this thesis, this thesis is based on version 2.0 of the specification [3]. Despite this fact, lots of
the core concepts of the Universal Serial Bus haven’t changed with USB 3.0, so most concepts
introduced by version 2.0 are still valid for version 3.0. If not otherwise noted, we will always
refer to version 2.0 of the USB specification in the following.

The USB specification defines three different speed modes to fulfill the needs of different classes

7

CHAPTER 2. TECHNICAL BACKGROUND 8

of devices. The supported speed modes are low–speed, full–speed and high–speed mode with
transfer rates of 1.5 Mb/s, 12 Mb/s and 480 Mb/s respectively. The low–speed mode is mainly
used for interactive devices such as mice or keyboards, while the full–speed and high–speed mode
is mostly used for isochronous data transfers, implemented by audio or video devices.

The following sections will go into more detail about the USB specification. Note, that the
discussion will stay focused on the logical software layer, because this is what we are mostly
examining in this thesis. Mechanical and electrical USB details will be mostly skipped. Interested
readers may refer to Chapters 6 and 7 of the USB specification [3] for more details.

2.1.1 Architecture

The USB system can be divided into three separate parts. These are the USB devices, the USB
host and the USB interconnect, which connects all USB devices with a single USB host.

USB devices are either hubs or functions. A USB hub is a special device that provides one or
more attachment points to the bus, while a function provides a specific capability, such as a
mouse or an external hard disk drive. Each USB device has a unique device address, which is
assigned by the host on attachment time. Before a unique address is assigned, devices have a
default address of zero. Multiple functions can be combined together with a hub into a single
physical package. This is called a compound device. All contained functions, including the hub
itself, have separate device addresses. Related USB devices are grouped into device classes, which
are described in Chapter 2.1.7.

The USB host is the central point in the USB architecture. It interacts through the host controller
with the rest of the USB system. Only a single USB host per bus is allowed. Tasks of the
host include the management of all transfers, detection of device attachment and removal and
configuration of new devices. Additionally, it may supply power to attached devices. All transfers
are initiated by the USB host. The USB host includes a root hub, which provides one or more
attachment points.

The physical USB interconnect is organized as a tiered star topology, as shown in Figure 2.1 At
the top of the topology is the USB host. All other devices are connected to the host through the
root hub. In this case, two functions and another hub are connected directly to the root hub. All
other functions and hubs are connected to the hub at tier 2. Hubs form the stars in the topology
and can be used to increase the number of attachment points for additional devices. Functions
can be connected directly at the root hub or any other hub. Due to physical constraints, the
maximum number of tiers is limited to seven.

2.1.2 Communication Flow

This section introduces some of the main concepts of the USB communication flow. Figure 2.2
shows the logical connection of a USB device connected to a host. Each component will be
described below in detail.

Endpoints

Each USB device can have several endpoints. The number and types of endpoints depends on the
purpose of the device. An endpoint is a source or sink of a communication flow on the bus. Each

CHAPTER 2. TECHNICAL BACKGROUND 9

USB host controller

Root hub

USB host

Hub 1 Function 1 Function 2

Function 3 Hub 2

Hub 3 Hub 4

Tier 1

Tier 2

Tier 3

Tier 4

Function 5 Function 6Function 4 Hub 5

Function 7

Tier 5

Tier 6

Figure 2.1: Universal Serial Bus topology

endpoint has a four–bit endpoint number and an associated endpoint direction. The endpoint
direction can be either IN or OUT and is seen from the perspective of the host. An IN endpoint
is used to transfers data from the device to the host, while an OUT endpoint is used by a device
to receive data from the host. The endpoint direction together with the endpoint number are
called the endpoint address. Figure 2.2 shows seven endpoints abbreviated as EP. The direction
of the endpoint is specified in parentheses.

Pipes

Endpoints are connected to software on the host using pipes. Pipes can be either unidirectional
or bidirectional. Where the latter are implemented using two endpoints with the same endpoint
number but different direction. Figure 2.2 shows two bidirectional pipes. Both pipes connected
to EP0 and EP1 are bidirectional pipes. The pipes connected to the remaining endpoints are

CHAPTER 2. TECHNICAL BACKGROUND 10

Client software

Interface 1

EP1

(OUT)

EP1

(IN)

EP2

(IN)

Client software

EP3

(IN)

Interface 2

EP4

(OUT)

...

...

Configuration

USB host

USB device

EP0

(IN)

EP0

(OUT)

Default control

pipe

Figure 2.2: Logical connection between a USB device and a host

unidirectional pipes. There are two different kinds of pipes, differing only in the structure of
data transferred. Stream pipes are used for the transmission of data without any USB–defined
structure. The communication flow in a stream pipe is always unidirectional. They are mainly
used for pure data transfers. Message pipes on the other hand have an imposed structure on
the data transferred over them. A successful communication flow over a message pipe always
starts with a request from the host, followed by a data transfer in one direction and finally a
status transmission to indicate the success of the data transfer. Hence, message pipes are always
bidirectional and require the IN and the OUT endpoint with the same endpoint number. Once
a device is powered up, one message pipe that is used by the host for the configuration of the
device always exists. This pipe is called the Default Control Pipe. It is always connected with
endpoint number zero.

Interfaces

Multiple pipes are grouped together to form an interface as can be seen in Figure 2.2. Interfaces
represent a single specific feature, which is offered to the host. One interface could provide a mass
storage device, while another one might by used to provide a human interface device, such as a
mouse. The exact purpose of each pipe in an interface, and the protocol used to communicate
over them, can either be specified in a device class specification as introduced in Section 2.1.7 or
in a vendor–specific definition. Most USB devices only provide one single interface at a time, but
it’s possible for a USB device to provide multiple interfaces. Such a device is called a composite
device. All interfaces can operate independently and provide their service at the same time, while
the device only has a single device address.

CHAPTER 2. TECHNICAL BACKGROUND 11

Configurations

A USB device can provide one or more configurations. Each configuration consists of one or
more interfaces. Compared to interfaces, only a single configuration can be active at any one
time. The host can choose between each provided configuration. It can even switch between
configurations, while the device is attached.

2.1.3 Bus Protocol

USB uses a token–based protocol, which employs polling. The host initiates all transfers and
checks on a scheduled basis whether a device needs to be served. In the following, we provide a
top–down overview of the USB protocol.

Transactions are used to transfer data on the bus in one direction. Data is either transferred from
the USB host to a USB device (upstream) or from a USB device to the USB host (downstream).
A transaction consists of multiple packets. Each packet consists of 8–bit bytes with the least–
significant bit first. All packets start with a synchronization field SYNC, which is used by the
electrical layer of the host to align incoming data with the local clock. After the SYNC field,
each packet contains a one byte packet identifier (PID). The packet identifier specifies the type
of the packet. Packets are grouped into packet classes. Three different packet classes are defined.
Table 2.1 lists the packet classes and some associated packets together with their encoding and
a description. For a complete list of all packet types, please refer to the USB specification [3].

Packet class PID name PID value Description

Token
OUT 1000 Asks the function to receive data from the host.
IN 1001 Asks the function to send data to the host.
SETUP 1011 Initiation of a control transfer by the host.

Data

DATA0 1100 Even data transfer.
DATA1 1101 Odd data transfer.
DATA2 1110 Used for high–speed isochronous endpoints with high

bandwidth.
MDATA 1111 Used for high–speed isochronous endpoints with high

bandwidth and also used in split transactions.

Handshake
ACK 0100 Acknowledgement of the received Data packet.
NAK 0101 Negative acknowledgement send by a function.
STALL 0111 Indicates inability to send/receive data.

Table 2.1: USB packet classes

Token packets are sent on a scheduled interval by the host. A transaction always starts with
the transmission of a token packet. Token packets are only sent by the host and never by a
device. Each token packet consists of a device address and endpoint number, in addition to the
PID field. Inside OUT and SETUP packets, those two fields are used to uniquely identify the
endpoint, which will retrieve the following data packet. IN packets use those fields to identify
the sender of the following data packet.

Data packets are sent in response to the reception of a token packet. They contain a data field
that can hold up to 1024 bytes of data. When a device receives an OUT token packet, it reads
the following data packet from the host. If an IN token packet is received by the device, the

CHAPTER 2. TECHNICAL BACKGROUND 12

following data packet is sent from the device to the host. The different data packets listed in
Figure 2.1 are used for different transaction modes not covered in this thesis. Please refer to
Chapter 8 of the USB specification for more details.

Handshake packets are used to return the status of a data transfer. The transmission of a
handshake packet finishes a transaction. Handshake packets don’t have any additional packet
fields. ACK handshake packets are send by the receiver of a data packet to signal the successful
retrieval of the data. NAK packets are used by a function to either signal, that it couldn’t read
the data send by the host of the OUT transaction or it didn’t have any data to be send for the
IN transaction. In both cases, it only signals a temporary condition. NAK packets are never
send by the host. STALL packets are send by a function to indicate the inability to transmit or
receive data.

Every USB device connected to the bus reads the initial token packet and decodes the device
and endpoint address therein. If the device address matches, the device selects itself for the
current transaction. The source of the transaction then sends the data in a data packet to the
destination. If no data is available at present, it indicates this by sending a NAK handshake
packet instead. The destination acknowledges the reception of the data packet with an ACK
handshake packet. The absence of an expected response indicates a failure. Token and data
packets are protected by a cyclic redundancy check (CRC).

All fields except for the packet identifier (PID) are covered by the CRC checksum in both packets.
If the CRC doesn’t match on the receiver side, the packet was corrupted and is ignored by the
receiver. The four–bit PID field of every packet is not covered by the packet CRC checksum.
It’s already protected by the following four–bit check field, which is generated by performing a
one’s complement of the PID field.

2.1.4 Transfer Types

The USB specification defines four different data transfer types, which determine, how data is to
be transferred over a pipe between the host and the endpoints on the device. Each transfer type
has different characteristics and thus fulfills the needs of different types of functions. Additionally,
each transfer type determines the type and order of performed transactions. The decision, which
transfer type is used for which pipe is made at development time of a device. The transfer type
can’t be changed afterwards. The various characteristics of each transfer type will be described
below.

Control Transfer

Control transfers can be used for configuration, command and status requests to a device. They
are only used on message pipes. Hence, the Default Control Pipe uses control transfers too.
The control transfer is the only transfer type which has an imposed structure on the data to be
transferred over the pipe. A control transfer always starts with a SETUP packet from the host
to the device, which contains the actual request. The SETUP packet is followed by zero or more
data packets, which transfer the data in the requested direction. Finally, a handshake packet is
sent from the function to the host, confirming the transfer. Control transfers are handled as a
“best effort” transfer. If there is free bus time, control transfers are scheduled. However, neither
bandwidth nor latency is guaranteed, although data delivery is guaranteed to be without loss.

CHAPTER 2. TECHNICAL BACKGROUND 13

Bulk Transfer

Bulk transfers are used for stream pipes with high bandwidth demands. This transfer type is
usually used to transfer large amounts of data. Any bandwidth available can be used. But no
guarantee for bandwidth or latency is given. Bulk transfers are handled the same way as control
transfers. When there is free bus time, bulk transfers can happen, but control transfers have a
higher priority than bulk transfers and therefore, are given priority. In the case of a bus error,
transfers are retried and the delivery of the data is guaranteed. Bulk transfers are, for example,
used with USB flash drives to transfer the data.

Interrupt Transfer

Interrupt transfers are used for devices that need infrequent access to the bus, but with guar-
anteed maximum service periods. Interrupt transfers are only used in stream pipes and thus
are always unidirectional. An example for a device using an interrupt transfer is a USB mouse.
Coordinate changes are only generated when the mouse is moved, but changes must arrive at
the host within a guaranteed time–frame.

Isochronous Transfer

Isochronous transfers guarantee a specific USB bandwidth with bounded latency. The endpoint
on the device specifies its required bus access period. Additionally, the data transferred over
the pipe is guaranteed to have a constant data rate, as long as enough data is provided by the
sender. Isochronous transfers are only used on stream pipes and thus are always unidirectional.
The obvious result is that transmission errors are only indicated to the receiver of a transaction.
Only full–speed and high–speed devices can use the isochronous transfer mode. Isochronous
transfers are for example used for the transmission of audio or video streams.

2.1.5 Descriptors

Descriptors are data structures that are provided by devices to describe all of their attributes.
When a device is attached to the bus, the host reads the descriptors from the device and configures
the device based on the read descriptors. The USB specification defines some standard descriptors
which are described below. There may be additional class– and vendor–specific descriptors. All
standard descriptors have a similar structure. They start with a one–byte length field, which
describes the total length of the descriptor. The length byte is followed by a one–byte type field,
which describes the type of the descriptor. The rest of the descriptor structure depends on the
specific descriptor type. All standard descriptors are interleaved and provided in serial form to
the host. Figure 2.3 shows the descriptors as they would be provided by the sample USB device
from Figure 2.2. The different standard descriptors are described below:

Device Descriptor

The device descriptor describes some general information about the device. All of the information
that may change with different configurations or interfaces is described in separate descriptors.

CHAPTER 2. TECHNICAL BACKGROUND 14

Device descriptor

Configuration descriptor

Interface descriptor 1

Endpoint descriptor 1 (OUT)

Endpoint descriptor 1 (IN)

Interface descriptor 2

Endpoint descriptor 3 (IN)

..
.

Configuration descriptor

Endpoint descriptor 2 (IN)

Endpoint descriptor 4 (OUT)

Interface descriptor 3

Figure 2.3: Interleaved descriptors provided by the sample USB device from Figure 2.2

There is only one device descriptor per device. It contains things like the number of configura-
tions, maximum packet size and the vendor and product IDs. The device descriptor is the first
descriptor read by the host as illustrated in Figure 2.3.

Device Qualifier Descriptor

The device qualifier descriptor is provided by devices that have different device information
depending on the speed they are operating at. For example, a high–speed device may have
different settings when operating as a full–speed or low–speed device. The settings for the
current operating speed are returned in the device descriptor. The device qualifier descriptor
may only be used by the host to request settings for operating speeds that it isn’t currently using.
The device qualifier descriptor includes the same information as the device descriptor except for
the things that don’t change with different operating speeds such as the vendor and product ID.

Configuration Descriptor

The configuration descriptor describes a specific configuration of the device. There is one con-
figuration descriptor for each configuration. A configuration descriptor describes one or more
interfaces. One of the first fields of the descriptor is a configuration ID, which is used by the
host, when it is selecting this specific configuration. Additional fields include the number of
interfaces provided by the configuration and optional references to string descriptors describing
the configuration using text strings. When the host requests the configuration descriptor, all
related interface and endpoint descriptors are returned as well. Figure 2.3 shows all the de-
scriptors, which are returned with the configuration descriptor. The configuration descriptor is

CHAPTER 2. TECHNICAL BACKGROUND 15

followed by the interface descriptor of the first interface, followed by all endpoint descriptors for
the endpoints of the interface. These endpoint descriptors are followed by possibly more interface
descriptors and their respective endpoint descriptors.

Other Speed Configuration Descriptor

The other speed configuration descriptor describes the configuration of a high–speed device. It
may only be requested by the host, when operating at one of the other speeds. The structure
of the other speed configuration descriptor is the same as the configuration descriptor. It allows
the host to get details about the high–speed configuration, even though it is currently operating
at another speed.

Interface Descriptor

The interface descriptor describes a specific interface of a configuration. It provides zero or more
endpoint descriptors. Interface descriptors can’t be accessed directly, but are always returned
as part of a configuration descriptor. Fields of the interface descriptor include the number of
endpoints, class and subclass code and an interface protocol, which may refer to a device class
specific protocol.

Endpoint Descriptor

Endpoint descriptors describe the properties of endpoints. The host uses that information to
make sure; it can handle the bandwidth requirements of all endpoints. The endpoint descriptors,
like the interface descriptors, can’t be accessed directly. They are always returned as part of
an interface descriptor. Fields of an endpoint descriptor include the type and address of the
endpoint, the maximum packet size and the required polling interval, which is used by the host
to contact the endpoint. Every endpoint has a corresponding endpoint descriptor, with one
exception: endpoint number zero does not have an endpoint descriptor. The maximum packet
size of endpoint zero is defined in the device descriptor and everything else is implicitly defined
by the USB specification.

String Descriptor

The string descriptor is a special case, insomuch that it isn’t returned directly by the device on
attachment time. All other device, configuration and interface descriptors may reference strings
from an optional string descriptor using string indexes. If no string descriptor is present on the
device, all references must be null. The actual strings in the string descriptor are represented
using Unicode UTF–16 encodings as defined in The Unicode Standard [4]. Strings can be repre-
sented in multiple languages inside the same string descriptor. When the host requests a string
descriptor, it supplies a 16–bit language ID with it. String index zero is a special case. It returns
a string descriptor with an array of all supported language IDs supported by the device.

CHAPTER 2. TECHNICAL BACKGROUND 16

2.1.6 Bus Enumeration

Bus enumeration is the process, in which the host learns about the attached USB device and loads
the corresponding device drivers. Only after a successful device enumeration can software running
on the host communicate with the attached USB device. During the enumeration process, devices
transition from one state to another. The USB specification defines six different device states
[5]:

1. Powered

2. Default

3. Address

4. Configured

5. Attached

6. Suspended

Except for the last two states, a USB device usually transitions through all those states during
the enumeration process. Although a specific order is not defined, a usual enumeration process
starts with a device in the Powered state and ends when the device reached the Configured state.

Enumeration starts, when a new device is attached to a hub. This can be either the root hub or
any other hub in the USB topology. Each hub provides an interrupt IN endpoint, which is used
to inform the host about newly attached devices. The host continually polls on this endpoint to
receive device attachment and removal events from the hub.

When a new device was detected by the hub, the host is notified about this event. At this
point, the hub port is still disabled and the device is in the Powered state. In response to the
status notification from the hub, the host queries the hub to receive the exact cause of the status
notification and to receive the actual port number, where the device was attached. Then, the
host waits for at least 100 milliseconds to let the device settle and until the power gets stable.

The host then sends a request to the hub to enable and reset the port. In response to this request,
the port is enabled and the device switches to the Default state. In this state, the device can
answer to requests sent from the host to the default address zero. The host then starts sending
standard USB requests through the Default Control Pipe to endpoint zero of the device. Since
the host only enumerates one device at a time, it is guaranteed, that only one device will answer
to requests addressed to the device address zero.

The first thing, the host requests from the device, is the device descriptor. This descriptor must
be read first, because it contains the maximum packet size of the Default Control Pipe, which
is needed for further communication. Because the host doesn’t know the maximum packet size
before reading the device descriptor, it only reads the first few bytes of it, which contain the
maximum packet size.

Although not required by the specification, some implementations issue another port reset to the
hub at this point to make sure that the device is at a known state afterwards. After the device
was reset, the host controller assigns a unique address to the device and sends a request to the
device to change its address. After the device changed its address, it switches to the Address
state and henceforth, only answers to requests to the newly assigned address.

CHAPTER 2. TECHNICAL BACKGROUND 17

Using the newly assigned address, the host now sends another request for the device descriptor.
This time, equipped with the knowledge of the maximum packet size, it reads the entire device
descriptor. After reading the device descriptor, one or more configuration descriptors, as specified
in the device descriptor, are read by the host. By reading a configuration descriptor, all associated
interface and endpoint descriptors are returned as well. After the host reads all the descriptors,
it tries to find a matching device driver. This process is highly dependant on the used operating
system and is described in detail for every major operating system in Chapter 3.

After a matching device driver was found and loaded, it’s the task of the device driver to select one
of the provided device configurations. The device driver selects one of the configurations based
on its own capabilities and the available bandwidth on the bus and activates this configuration
on the attached device. At this point, the device is in the Configured state. That means, that
all interfaces and their endpoints of the selected configuration are set up and the device is ready
for use.

When a hub doesn’t provide any power to a connected device, it is in the Attached state. This
condition can either be forced by the host or it could happen due to a detected over–current
condition. In the Attached state, a device can’t communicate with the host.

During normal operation the host is constantly sending token packets on the bus. A device can
enter the Suspended state, when no activity has been seen on the bus for at least 3 milliseconds.
In this state, the device should try to limit its power consumption to a minimum.

2.1.7 Device Classes

USB devices can be categorized into groups of different device classes [5]. A device class describes
devices that have similar attributes and services in common. The grouping of devices into
different device classes has the benefit that only one device driver must be written per device
class instead of writing a new driver for every developed device. Operating systems can provide
class drivers, so that the vendor of a USB device doesn’t have to provide separate drivers. In
addition, the device class specification itself can be used as a reference when building new USB
devices of a specific class.

There are device class specifications for a lot of device classes, such as audio devices, human
interface devices (HID) or mass storage devices. USB hubs are a special case. They are not
described in a separate class specification. Their description is part of the USB specification [3]
itself. This decision was made because the USB architecture can’t work without at least one
USB hub, the root hub. Each class specification assigns at least one class code, which can be
used by the USB device to identify itself as a device of that class. Depending on the device
class, the class code can be provided at two different locations by the device. It can either be
specified in the device descriptor or in the interface descriptor. Some device classes allow the
class code to be provided in both descriptors. For a list of approved class specifications [6] and
the descriptors, where the class code can be specified, see Table 2.2.

All device class specifications are based on the Common Class Specification. This specification
defines all the things that should be included in a class specification document and how it should
be organized. Typical things included in a class specification are:

• Number of endpoints and their use

• Values in standard descriptors

CHAPTER 2. TECHNICAL BACKGROUND 18

Class Descriptor usage
Audio Interface
Communications Device Device/Interface
Human Interface Device (HID) Interface
Still Image Capture Interface
Printer Interface
Mass Storage Interface
Chip/Smart Card Interface
Content Security Interface
Video Interface
Personal Healthcare Device/Interface
Device Firmware Upgrade Interface
IrDA Bridge Interface
Test and Measurement Interface

Table 2.2: USB class specifications

• Class–specific descriptors and their structure

• Interfaces

• Control requests

Additionally, the structure of the data transferred by a class device may be defined in the class
specification. For example the class specification for Human Interface Devices (HID) defines the
format of the report data structure, which is used to transfer events such as mouse movements
or clicks to the host. However, the data transferred by a class device can also be specified in
a different standard, as it’s the case with mass storage devices, where SCSI [7] commands are
transferred.

A class specification has to satisfy two claims: it should allow a manufacturer to build a new
device for that specific device class and developers should be able to write a device class driver
with the help of the class specification.

2.2 Software Vulnerabilities

This chapter will introduce some of the most common classical software vulnerability classes
that can be used by an attacker to compromise a system. Each class is first introduced, then the
method of exploitation is described.

2.2.1 Buffer Overflows

Buffer overflows happen, when a process writes more data to a fixed–length buffer in memory
than it can hold. Adjacent memory regions will be overwritten by the data exceeding the buffer
length leading to undefined behaviour. Depending on the location of the buffer in memory and
the content of adjacent memory regions, the consequences can range from simple program crashes
to the execution of arbitrary attacker–supplied code.

CHAPTER 2. TECHNICAL BACKGROUND 19

The root cause of buffer overflows is insufficient bounds checking. If an attacker can supply data
to a process that is used as the source of a memory copy operation, and the process doesn’t check
for the data fitting into the buffer, a buffer overflow condition can occur. C and C++ are two
of the most common programming languages plagued by buffer overflows because they have no
built–in protection for out of bounds memory access.

Two specific buffer overflow classes will be described in more detail in the following two sections.
Starting with stack–based overflows and then descending to the slightly more complicated heap–
based overflows.

Stack–based Overflows

Stack–based overflows are buffer overflows, where the buffer resides on the execution stack.
Figure 2.4 illustrates a simplified memory layout of a process in the IA–32 architecture [8]. The
kernel of the operating system resides in the lower memory addresses. The memory of the actual
process is organized in multiple segments. The read–only text segment holds all the instructions
of the process to be executed. The data and bss segments hold initialized and uninitialized
data respectively. For example, static variables are stored in those segments. The heap holds
dynamically allocated memory buffers. Data on the heap must be allocated and freed explicitly
by the application. The stack is used for local variables, arguments and return values of functions.
In addition, control data of active functions is placed on the stack. This control data includes the
return address of the current function, where program execution should continue after returning
from the current function. The stack is organized as a LIFO (last in, first out) structure. That
is, elements can only be added or removed from the top of the stack. In contrast to the other
segments, the heap and stack segments don’t have a fixed size. They are automatically enlarged
by the kernel when more space is needed. The heap grows towards the high memory addresses,
while the stack grows towards the low memory addresses. The operating system makes sure that
the heap and the stack don’t clash.

High memory addresses

Low memory addresses

OS kernel

text segment

data segment

bss segment

Heap

Stack

Figure 2.4: Process memory layout

The stack is composed of multiple stack frames. Each stack frame corresponds to an active
function, which has not yet returned. There is one register which always points at the top
of the stack. It’s called the stack pointer. The bottom of the current stack frame can be

CHAPTER 2. TECHNICAL BACKGROUND 20

1 #include <stdio.h>
2 #include <string.h>
3
4 void
5 parse(char *ptr)
6 {
7 char buf [128];
8
9 strcpy(buf , ptr);

10 printf("%s\n", buf);
11 }
12
13 int
14 main(int argc , char **argv)
15 {
16 if (argc != 2)
17 return 1;
18 parse(argv [1]);
19 return 0;
20 }

Listing 2.1: Simple strcpy(3) overflow

indicated by another register, called the base pointer. Memory inside the current stack frame
can be addressed relative to the base pointer. To modify the stack, the IA–32 architecture
implements two instructions called PUSH and POP. The PUSH instruction decrements the stack
pointer and stores the source operand on the stack at the new address of the stack pointer. The
POP instruction reads a value from the stack into the destination operand and increases the stack
pointer.

On the IA–32 architecture, a function is called using the CALL instruction. This instruction saves
the instruction pointer of the next instruction after the CALL on the stack, before jumping to the
given function. When program control gets transferred to the function, it starts by executing a
function prologue. This function prologue is responsible for setting up a new stack frame and
saving the registers to be used onto the stack. A typical function prologue as generated by a
compiler first saves the current base pointer EBP on the stack. It then sets the current value
of the stack pointer ESP as the new value for the base pointer, effectively starting a new stack
frame. By decrementing the stack pointer, the size of the stack frame can be increased to reserve
some space for local variables. At the end of a function, the function epilogue restores the values
of the old stack and base pointer, and issues the RET instruction, which transfers program control
back to the address located on top of the stack.

Listing 2.1 shows a small C program, which is vulnerable to a simple stack–based overflow. It
first makes sure that exactly one command line argument was passed and then calls the parse()
function with a pointer to the first argument. The parse() function then copies the string to a
local buffer buf, which can hold up to 128 bytes. Since the strcpy(3) function doesn’t perform
any bounds checking, this can overflow the local buffer, if the length of the first command line
argument exceeds the length of the buffer.

Figure 2.5 shows the stack layout just before calling the strcpy(3) function. At the bottom of

CHAPTER 2. TECHNICAL BACKGROUND 21

the stack is the stack frame of the main() function. It contains the arguments of the function
pushed on the stack in reverse order and at the top of the stack frame, the return address, where
the main() function returns to.

char buf[128]

Saved EBP from main()

Return address in

main()

Pointer to argv[1]

Return address

int argc

char **argv

Stack

frame of

parse()

Stack

frame of

main()

Stack pointer

Frame pointer

. . .

Top of stack

Figure 2.5: Stack layout just before the strcpy(3)

After main()’s stack frame, the stack frame of the parse() function begins. It begins with
the arguments passed to the parse() function, which in this case is only a pointer to the first
command line argument argv[1]. After that comes the return address, where the parse()
function will transfer program control back to when finished. This return address was pushed
onto the stack by the CALL instruction. The return address is followed by the saved base pointer,
which was stored there by the function prologue of parse(). Just next to the saved base pointer
at the top of the stack resides the local buffer buf[128].

When the program in Listing 2.1 is called with an argument of 128 characters or more, the call to
strcpy(3) starts to overflow the adjacent memory region. Starting with the saved base pointer,
the return address and everything after that is overwritten by the strcpy(3) overflow. So by
crafting a specially formed command line argument, the attacker can control other values on the
stack. When running the program with a command line argument of exactly 136 “A” characters,
the buffer is filled by the first 128 characters and the remaining 8 characters overwrite the saved
based pointer and the saved return address on the stack. Figure 2.6 shows the stack, just after
the strcpy(3) function returned.

Note that a single byte of the pointer to argv[1] is also overwritten by a NUL byte. This is
because the strcpy(3) function always NUL–terminates the copied string. When the parse()
function returns, its function epilogue first pops the saved base pointer from the stack and stores
it as the current base pointer. Since it was overwritten with four “A” characters, it is now
0x41414141. After that, the RET instruction pops the saved return address from the stack and
transfers program control to it. The saved return address was overwritten as well, so program
control is now transferred to the address 0x41414141. Since this address is likely not mapped in

CHAPTER 2. TECHNICAL BACKGROUND 22

AAAAAAAAAAAAAAA

AAAAAAAAAAAAAAA

AAAAAAAAAAAAAAA

AAAAAAA…AAAAAAA

AAAAAAAAAAAAAAA

AAAAAAAAAAAAAAA

AAAAAAAAAAAAAAA

AAAA

AAAA

Pointer to argv[1]

Return address

int argc

char **argv

Stack

frame of

parse()

Stack

frame of

main()

Stack pointer

Frame pointer

. . .

Top of stack

Figure 2.6: Stack layout after a strcpy(3) overflow

memory, this results in a segmentation violation.

One way an attacker could exploit this vulnerability is by putting his own code to be executed
at the start of the buffer and then overwrite the saved return address with the memory address,
where his own code resides on the stack. This way, when the parse() function returns, it
transfers program control directly to the attackers supplied code, which then gets executed on
the stack [9].

Heap–based Overflows

Heap–based overflows are buffer overflows where the buffer resides on the heap of a process. The
heap is a dynamically sized memory region, managed by some heap allocator which resides in
the user–mode. In contrast to the stack, the heap can be used by applications to store data,
the length of which isn’t known until run–time. By utilizing the help of the kernel, the heap
allocator reserves some big block of memory in the heap segment of the process and provides
smaller chunks of it to the process on demand. Additionally, it can free the requested chunks
again, if requested by the application. While trying to keep good performance, the heap allocator
also tries to avoid fragmentation [10].

Common heap allocators include RtlHeap, which is used on Windows–based operating systems,
Doug Lea’s Malloc [11], which is included in the GNU C Library and PHK malloc [12] which is
mainly used on BSD–derived operating systems.

The general problem, which makes heap–based overflows universally exploitable, is the in–band
storage of management information. This includes lists of used and free blocks and the different
sizes of memory blocks. When an attacker overflows a buffer on the heap, this management data
is modified, which can lead to arbitrary memory overwrites, as will be demonstrated below.

CHAPTER 2. TECHNICAL BACKGROUND 23

1 #define INTERNAL_SIZE_T size_t
2
3 struct malloc_chunk {
4 INTERNAL_SIZE_T prev_size;
5 INTERNAL_SIZE_T size;
6 struct malloc_chunk *fd;
7 struct malloc_chunk *bk;
8 };

Listing 2.2: Structure of the boundary tag

In the following, the general functionality and exploitation of a heap allocator will be described on
the basis of the original Doug Lea’s Malloc. Doug Lea’s Malloc, or dlmalloc for short, provides
some library functions for managing the heap memory. These include malloc(3), free(3),
calloc(3) and realloc(3). These allow a process to request some parts of memory and to
free it again. The heap allocator separates the memory of the heap into multiple chunks. Each
chunk represents an allocated or free part of the memory. Each chunk starts with a boundary
tag, which is basically some management information used by the heap allocator and is hidden
inside the implementation. The structure of a boundary tag can be seen in Listing 2.2.

The prev_size member describes the size of the previous chunk, while the size member de-
scribes the size of the current chunk. Since all chunks are 8 byte aligned, the 3 least significant
bits of the size member are always 0. These are used to store two status bits. The low–order
bit is PREV_INUSE, which indicates, if the previous chunk is allocated or free. The second–lowest
order bit is IS_MMAPPED, which indicates, if the underlying memory was obtained by the mmap(2)
system call. The size fields are followed by fd and bk, which are pointers to the next and the
previous chunks respectively. Note, that the next and previous chunks are not necessarily the
physical adjacent ones.

The use of the different members of the boundary tag depends on if the current and the previous
chunk is free or allocated. The prev_size member is only used by dlmalloc, should the previous
chunk be a free chunk. The forward chunk pointer fd and the backward chunk pointer bk are
only used if the current chunk is free. In allocated chunks, the user data starts directly after the
size member. See Figure 2.7 for two adjacent heap chunks, where a free heap chunk is followed
by an allocated one.

All available free chunks are stored in bins. There are multiple fixed–width bins, each storing
free chunks of a different specific size range. The chunks themselves are sorted by a decreasing
size sequence inside their bins. Each bin represents a single circular doubly–linked list, which is
empty at program start. Free neighbour chunks are always coalesced to form the largest possible
free chunk and to prevent fragmentation. New chunks are searched for in a smallest–comes–first,
best–fit order.

When an application requests some heap memory by the use of one of the aforementioned library
functions, dlmalloc needs to find some free chunk and remove it from the bin. The unlink()
macro is used for this purpose. When the application no longer needs the memory, it calls the
free(3) function, causing dlmalloc to add the respective chunk back to a bin. This is done using
the frontlink() macro. The unlink() macro is shown in Listing 2.3.

The unlink() macro first reads the backward chunk pointer of the chunk to be unlinked and
stores it in BK in line 2. The forward chunk pointer is stored in FD in line 3. To remove the chunk

CHAPTER 2. TECHNICAL BACKGROUND 24

prev_size

size

fd

bk

Free

chunk

prev_size

size

Allocated

chunk

user data

user data

Boundary

tag

Boundary

tag

Figure 2.7: Two adjacent heap chunks

1 #define unlink(P, BK, FD) { \
2 BK = P->bk; \
3 FD = P->fd; \
4 FD ->bk = BK; \
5 BK ->fd = FD; \
6 }

Listing 2.3: dlmalloc unlink() macro

from the doubly–linked list, first the backward pointer of the next chunk FD->bk, which pointed
to the chunk P to be removed, is set to the previous chunk BK in line 4. The same is done for
the forward chunk pointer of the previous element BK->fd in line 5, effectively unlinking chunk
P. This process is illustrated in Figure 2.8.

Both the unlink() and the frontlink() macros can be used by an attacker to exploit a heap–
based overflow to execute arbitrary code. We are only demonstrating the exploitation using the
unlink() macro. Exploitation using the frontlink() macro works in a similar way. Interested
readers may refer to [13].

When an attacker overflows a buffer on the heap, he starts overwriting the boundary tag of the
following chunk. By modifying the boundary tag, the attacker can effectively construct a fake
chunk, with values of his own choosing. By tricking dlmalloc to process this fake chunk with the
unlink() macro, an arbitrary value chosen by the attacker can be written at an arbitrary location
in memory. This is enough for an attacker to execute arbitrary code.

CHAPTER 2. TECHNICAL BACKGROUND 25

prev_size

size

fd

bk

prev_size

size

fd

bk

prev_size

size

fd

bk

BK P FD

Figure 2.8: Removing a chunk from the doubly–linked list

The memory location to overwrite, subtracted by 12, can be stored in the forward pointer P->fd
of the fake chunk. The need for the constant to be subtracted will become clear shortly. The
value to be written at that memory location must be placed in the backward pointer P->bk.
When the unlink() macro tries to unlink the fake chunk, it first reads the backward pointer
P->bk, which is now our value to be written, and stores it into BK. Next, the forward pointer
(which is the memory location minus 12) is stored in FD. Line 4 of the unlink() macro now
stores the value of BK at FD->bk. Since the bk member of the boundary tag structure is exactly
at offset 12, it assumes the value from FD, which was the desired memory location minus 12, and
adds 12 to it. This effectively writes the value from BK at the desired address.

One way to accomplish arbitrary remote code execution is to overwrite some function pointer
in memory with the address of some attacker–supplied shellcode in the hope that this function
pointer will get used in the future. The attacker would store the address of the function pointer
inside the forward pointer and the address of the shellcode inside the backward pointer. However,
when the last line of the unlink() macro gets executed, it would write the forward pointer
FD, containing the address of the function pointer, directly in the middle of the shellcode. To
overcome this small hurdle, the first thing the shellcode should do, is to jump over this location,
to prevent modification by the unlink() macro.

Most of the common heap allocator implementations where hardened recently to make exploita-
tion as described above more difficult by introducing some kind of cookies [14], guard pages
[15] or completely storing the management information out–of–band [16]. Although completely
protecting the management information may prevent the universal exploitation demonstrated
above, other attacks can still be feasible from case to case. Modifying sensitive data, such as
function pointers, in the same chunk or overflowing inside the adjacent neighbour chunk might
lead to exploitable conditions, even when management information is stored out–of–band.

CHAPTER 2. TECHNICAL BACKGROUND 26

2.2.2 Double Frees

Double free vulnerabilities happen when the application mistakenly frees a heap memory block
twice. This can happen when calling the free(3) function twice with the same pointer. These
kind of bugs often happen in error conditions and under other exceptional circumstances.

When a memory chunk gets freed by the heap allocator, it is either coalesced with another free
neighbour chunk or it is linked inside a bin by the frontlink() macro. The frontlink() macro
just finds the point in the bin, where the chunk should be linked. It then modifies the forward
chunk pointer of the chunk before and the backward chunk pointer of the chunk behind to point
to the new chunk. The forward and backward chunk pointers of the new chunk are set to the
neighbour chunks accordingly.

When free(3) is called a second time on the same pointer, dlmalloc tries to free the chunk
again. If no free neighbour chunk is found, the frontlink() macro is used again on the same
chunk. This effectively makes the forward and backward chunk pointer of this chunk point to
itself. If thereafter, the attacker can trick the application into requesting memory of the same
size, dlmalloc tries to unlink the doubly freed chunk from the bin by using the unlink() macro.
Since the forward and backward chunk pointer point to the chunk itself, the unlink() macro has
no effect (see Listing 2.3), effectively leaving the chunk linked in the bin. Now the application
holds a pointer to the data portion of the chunk, which is still linked inside a bin as a free chunk.
As can be seen in Figure 2.7, the data portion of an allocated chunk directly starts at the offset,
where the forward and backward pointers are stored in a free chunk. If the application writes
data at the first 8 bytes of the returned pointer, it overwrites the forward and backward chunk
pointers. Since the chunk is still linked in the bin, those pointers are still used by dlmalloc.

To exploit such a vulnerability, an attacker can use the same methods, as used for the exploitation
of heap–based overflows as demonstrated in Section 2.2.1. To write an arbitrary value at an
arbitrary address in memory, the attacker just overwrites the forward chunk pointer with the
desired address subtracted by 12 and sets the backward chunk pointer to the value to be written.
By tricking the application into requesting another chunk of the same size, dlmalloc again uses
the unlink() macro to unlink the doubly–freed chunk. But this time, the forward and backward
chunk pointers were modified by the attacker, leading to the execution of arbitrary attacker–
supplied code.

2.2.3 Integer–related Bugs

Integer–related bugs can happen, when the programmer isn’t fully aware of the slightly compli-
cated rules of integer arithmetic and type conversion in the C family of languages. Assumed an
attacker is able to influence an arithmetic operation, depending on the code, he might be able
to leverage the unexpected behaviour to his benefit.

Unsigned integers are stored in memory by their respective binary sequence. For storing signed
integers, usually the twos complement system is used. The most significant bit in memory repre-
sents the sign bit. It indicates the signedness of the stored integer. The sign bit is accompanied
by a number of value bits, which are used to store the actual integer without the sign. The
number of value bits depends on the type of the integer. A sign bit of 0 indicates a positive
integer, while a value of 1 indicates a negative one. The value of positive integers can be read
directly from memory by just reading the value bits. This can’t be done for negative integers.
To get the value of a negative integer, the value bits first have to be converted. This is done by

CHAPTER 2. TECHNICAL BACKGROUND 27

inverting all the bits and then adding one to the result. This method is used, because it can be
implemented efficiently in hardware.

The actual range of representable numbers of a type depends on the number of value bits. For
example, an 8–bit unsigned integer can use all 8 bits as value bits. So 28 possible values can
be represented which results in the range of representable numbers from 0 to 255. A twos
complement 8–bit signed integer on the other hand, needs one bit for the sign bit. This leaves 7
bits as value bits. Thus, 27 positive and 27 negative values are possible. With the sign bit set to
0, positive numbers in the range from 0 to 127 can be represented. When the sign bit is set to
1, negative numbers in the range from -128 to -1 can be represented. So an 8–bit signed integer
can store values ranging from -128 to 127. In general, a twos complement signed integer of width
X can represent values in the range of −2X−1 to 2X−1 − 1 [17].

When doing some arithmetic operation on an integer, it is possible to yield a result, which would
exceed the boundaries of the representable numbers of the actual integer type used. This is called
an arithmetic boundary condition. Normal addition, subtraction, multiplication and even division
can result in values, which can’t be stored in the underlying type and thus lead to arithmetic
boundary conditions. Two specific arithmetic boundary conditions are integer overflows and
integer underflows, where the resulting value is either too large or too small to be stored in the
integer respectively.

The effect of an arithmetic boundary condition depends on the signedness of the type. Unsigned
integers are subject to the rules of modular arithmetic. That means that all results are taken
modulo 2X , where X is the bit width of the integer. Increasing the largest possible value by one,
results in a wrap–around to the smallest possible value 0. Likewise, decrementing the smallest
value 0 by one results in a wrap–around to the largest possible value.

The effect of arithmetic boundary conditions on signed integers is a little bit different. The
largest possible positive value is a value, where the sign bit is 0 and all the value bits are 1.
When this value is incremented by one, the sign bit gets flipped and the result is a large negative
number. Similarly, when the smallest possible negative number gets decremented by one, the
sign bits wraps around and the result is the largest possible positive number.

When arithmetic boundary conditions are not taken into account by the programmer, unexpected
results may happen. When an attacker is able to influence an arithmetic operation to provoke
an arithmetic boundary condition, he may be able to influence program flow in a certain way.
This can often lead to a security compromise of the application. C and C++ are most prone
to these kinds of problems, because the programmer has to manage low–level details such as
dynamic memory allocation and he is responsible for storing only as much data into a buffer, as
it can hold. These tasks require arithmetic operations in most cases. By influencing one of these
arithmetic operations, an attacker could trick the application to operate on memory outside the
allocated region. This can easily result in buffer overflow conditions, which can be exploited by
an attacker as demonstrated in Section 2.2.1.

Listing 2.4 shows a simple example of an integer overflow using an unsigned integer. The program
first makes sure, that exactly one command line argument was given to the application. In line
14, the length of the first argument is stored in the unsigned short variable size. After the
length of the string is known, the length of the buffer to be allocated is calculated in line 16.
The one additional byte is used for the terminating NUL byte, which will be appended in line
22. Line 18 then allocates a buffer on the heap using the calculated buffer size. Following the
allocation of the buffer, the provided command line argument will be copied to the allocated
buffer in line 21 using the memcpy(3) function.

CHAPTER 2. TECHNICAL BACKGROUND 28

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 int
6 main(int argc , char **argv)
7 {
8 char *buf;
9 unsigned short buflen , size;

10
11 if (argc != 2)
12 return 1;
13
14 size = strlen(argv [1]);
15
16 buflen = size + 1;
17
18 if ((buf = malloc(buflen)) == NULL)
19 return 1;
20
21 memcpy(buf , argv[1], size);
22 buf[size] = ’\0’;
23
24 printf("%s", buf);
25 free(buf);
26
27 return 0;
28 }

Listing 2.4: Example of an exploitable integer overflow

CHAPTER 2. TECHNICAL BACKGROUND 29

This example may seem harmless, but is actually an exploitable integer overflow. Assume, that
the size variable is a 16–bit variable. When the program is run with a first command line
argument of exactly 65535 (0xffff) characters, which is the largest possible value representable
in a 16–bit unsigned short integer, the arithmetic operation size + 1 in line 16 will result in a
value, which can’t be stored in a 16–bit unsigned short integer. The result of that expression
will wrap around to the number 0, which will then be used to allocate the buffer on the heap.
Later in the call to memcpy(3), the value of size (0xffff) is used to copy memory from the second
command line argument to the zero–sized heap buffer, which results in memory corruption.

But integer overflows and underflows are not the only problems, which can be exploited by an
attacker. Type conversion bugs are another class of bugs, which are really tricky to spot in the
source code of an application. These kind of bugs often lead to security vulnerabilities as well.

Type conversion is the process of the compiler, by which it converts an object of one type
to another. There are basically two kinds of type conversion. The first one is explicit type
conversions. This happens, when the programmer explicitly used casts to convert from one type
to another. The second kind of type conversion is implicit type conversion. As the name suggests,
implicit type conversion is done by the compiler in the background without the programmer
explicitly asking for it. It tries to make things work as expected.

Similar to arithmetic boundary conditions, type conversion can result in bugs, where variables can
hold values, unexpected by the developer of an application. This again can lead to unexpected
results and may allow an attacker to compromise the security of the application.

A complete description of type conversion bugs and their security relevant consequences can be
found in [17].

2.2.4 Format String Vulnerabilities

Format strings are used in a couple of ANSI C functions. Those functions take a variable number
of arguments and one of the first arguments is the format string. It describes the number and
types of the following arguments. Common format string functions include the printf(3) family
of functions, syslog(3), err(3) and a lot of other ones. Format strings are used to convert the
remaining arguments of different C data types to their string representation. If an attacker can
influence the format string in certain ways, a format string vulnerability arises.

Format strings consist of normal text and embedded format specifiers. One format specifier
refers to one argument of the function and indicates the data type of it. Some common format
specifiers can be seen in Table 2.3.

Format Output Argument type Passed by
specifier
%d Signed decimal integer int value
%u Unsigned decimal integer unsigned int value
%x Unsigned hexadecimal integer unsigned int value
%s Pointer to array of characters const char * reference
%n (Number of characters written so far is stored) int * reference

Table 2.3: Some printf(3) format specifiers

Arguments to the format string functions are passed on the stack. Each format specifier in

CHAPTER 2. TECHNICAL BACKGROUND 30

1 #include <stdio.h>
2
3 void
4 logmsg(char *msg)
5 {
6 printf(msg);
7 printf("\n");
8 }
9

10 int
11 main(int argc , char **argv)
12 {
13 if (argc != 2)
14 return 1;
15 logmsg(argv [1]);
16 return 0;
17 }

Listing 2.5: Simple format string vulnerability

the format string is replaced in the output with the string representation of one argument from
the stack. Thus the number of format specifiers in the format string determines, how many
arguments are read from the stack.

Listing 2.5 shows a simple format string vulnerability. The first command line argument argv[1]
of the application is passed to the logmsg() function where it is directly used as the format string
for printf(3). As long as no format specifiers are found in the string, the application shows the
expected behaviour, just printing the given argument on the console. But when format specifiers
are found in the string, the application tries to receive the respective arguments from the stack.
Since the format string is the only argument passed to the printf(3) function, arbitrary data
is read from the stack.

An attacker has multiple choices, when exploiting such a vulnerability. Information disclosure is
one of the easiest ones. If the format string function outputs the string somewhere, where the
attacker can read it, he can specify multiple %x format specifiers and thus display the content
of the stack. Sensitive information such as return addresses or possible stack cookies could
be learned this way. But not only values from the stack can be displayed. Even values from
arbitrary memory locations can be obtained, by using one of the format specifiers, which expect
their argument to be passed by reference. In most cases, the format string itself is located
somewhere on the stack. By supplying enough “dummy format specifiers”, the format string
itself can be reached. The desired memory address can then be placed inside the format string.
By using a format specifier such as %s at that point, all the characters at the desired address are
displayed.

Another simple attack is to just crash the application. This can be easily done by putting multiple
format specifiers into the format string, which expect their argument passed by reference. When
the printf(3) function tries to dereference the respective pointers on the stack, chances will
be high, that there are addresses, which don’t represent valid addresses to mapped memory,
resulting in a segmentation violation and the termination of the process.

CHAPTER 2. TECHNICAL BACKGROUND 31

But a format string vulnerability can even be exploited to gain arbitrary code execution for the
attacker [18]. The special %n format specifier can be used for this purpose. It is special in so
far, that it doesn’t produce any output in the resulting string, but it stores the number of the
currently written bytes inside its corresponding argument on the stack. Like in the information
disclosure attack above, the attacker uses a few format specifiers for padding to reach the actual
format string on the stack. Since the %n format specifier expects a pointer to an integer on the
stack, as stated in Table 2.3, an arbitrary memory address can be put into the format string,
which is then used by the format specifier to store the current number of written characters.
The number of written characters can be influenced to a certain extend, since the attacker can
just prepend more characters in the format string. By setting the minimum field width of the
format specifiers to a large value, the number of written character can even be more increased.
But this is not enough, to write a complete 4 byte value, which is needed e.g. to overwrite a
pointer in memory. To overcome this limitation, one byte at a time can be written. Since the %n
format specifier expects a pointer to an integer, it always writes 4 bytes. By using four single %n
format specifiers with each address on the stack addressing one of the 4 single bytes, each least
significant byte of the value can be written separately, always overwriting the next 3 bytes. This
effectively stores an arbitrary 4 byte value at an arbitrary address. The 3 bytes behind that 4
byte value are overwritten too, but that can be neglected in most cases.

2.3 Fuzz–Testing

The process of finding new vulnerabilities in software can be categorized into two approaches,
namely white box testing and black box testing. One popular white box technique is source code
auditing. As the name implies, the auditor has full access to the software’s source code. Although
a big advantage, depending on the code size, it can also be a really complex and time–consuming
task leading to high costs.

An alternative to source code auditing is fuzz–testing or fuzzing, which is a black box approach.
Fuzzing provides unexpected or faulty input to a running process in trying to reach corner cases in
the code and trigger exceptions or undefined behaviour [19]. The advantage of fuzzing compared
to a white box approach is the simplicity and short time, in which new vulnerabilities may be
found without much effort. The missing source code might even be a benefit, because when
testing the application the auditor doesn’t make any assumptions about the underlying source
code, which the developers of the application might have done. This can easily happen, when
doing a source code audit and leads to gaps in testing. Fuzzing is a good technique for catching
the low–hanging fruit implementation bugs, resulting in crashes of the application. But it doesn’t
come without a cost. There are several vulnerability classes, which are not likely to be found
by fuzzing, such as design logic bugs or other bugs which are not resulting in obvious crashes or
exceptions. Compared to a white box approach such as source code auditing, where you could
read the source code from start to end, in fuzzing it is harder to get complete code coverage of
the whole application, because your input to the application may never reach some code paths.

2.3.1 History

The fuzzing technique was first developed in 1989 at the University of Wisconsin–Madison by
Professor Barton Miller and his Advanced Operating Systems class [20]. Inspired by the ob-
servation, that sometimes, noise on a dial–up phone line was causing programs to crash in the

CHAPTER 2. TECHNICAL BACKGROUND 32

current login session, they developed a simple fuzzer, which was used to test the robustness of
different UNIX applications. Their fuzzer just passed random strings to each UNIX application
and looked for core files afterwards, which would indicate a program crash. When an application
crashed or just hung, it had failed the test.

In 1999 work began at the University of Oulu on the PROTOS test suite [21]. They took a little
bit more systematic approach than the one taken by the group around Professor Barton Miller.
Instead of generating random data, they analyzed some protocol specifications and created hand–
crafted packets, which were expected not to be handled correctly by implementations. This
approach took considerable more time to create all the packets, but could be used to test lots of
different implementations afterwards.

The development of the PROTOS test suite set the stage for the development of lots of different
fuzzers in the coming years. Besides all the stand–alone fuzzing scripts, some fuzzing frameworks
where created, which allowed to easily write new fuzzers without much effort. One of them will
be introduced in the next section.

2.3.2 Block–Based Fuzzing

Block–based fuzzing was first presented by Dave Aitel in 2002 [22] and resulted in SPIKE, a fuzzer
creation kit based on a C API. Protocol data is structured as blocks, which contain a length
field and a queue of bytes. The length field is dynamically updated in each fuzzing run, when
the amount of bytes inside the block changes. This way, blocks can be nested and intertwined,
without worrying about the length field of each block. In addition to length fields, checksums
and other fields, which change as well with the modification of the data, can also be dynamically
adjusted. This makes it really easy to stack multiple protocols on top of each other without
worrying about the lower layer protocols.

2.3.3 Input Data Creation

There are generally two possibilities to create the fuzzing input for an application which can
be broken down into two categories of fuzzers. Generation–based fuzzers create their test cases
from scratch by modelling a specific protocol or file format, while mutation–based fuzzers are
modifying valid data samples to construct new test cases from that [19]. Generation–based
fuzzers can have a much higher code coverage, because they can implement each and every detail
of a protocol or file format. But since they are basically re–implementing the whole protocol or
file format, it is a really time–consuming process. Mutation–based fuzzers can be developed very
quickly, because the only thing needed is a valid data sample. The quality of the results then
depends on the number of different data samples. Protocol or file format details, which are not
used in one of the data samples, are obviously not tested.

Chapter 3

USB Support in Selected
Operating Systems

Most of the common operating systems today come with some kind of USB support. This
chapter gives an overview of the USB support in some of the major operating systems. Section
3.1 introduces the USB support in Linux–based operating systems. It is followed by Section
3.2, which deals with USB support in Apple’s latest operating system OS X. Finally, Microsoft
Windows XP and Windows Vista are introduced in Section 3.3 and 3.4 respectively.

For each operating system, the driver architecture is described first. Based on this information,
the process of enumeration, i.e. what happens when a new USB device is connected to the
system and how drivers are loaded, is then described. Finally, a list of all class drivers that come
pre–installed with each operating system is given.

3.1 Linux

Linux first introduced some preliminary USB support with the 2.2 series of the kernel. The first
complete USB support then came with the 2.4 series, of which some parts were back ported to
the 2.2 branch [23]. This section will focus on the latest stable 2.6 series of the kernel as of this
writing.

3.1.1 Driver Architecture

The Linux kernel has support for two different kinds of USB device drivers. The first ones are
what most people would associate with the word “device drivers”. These drivers run on the host
system, which gives the host the capability to talk to external USB devices. Throughout this
section, we will refer to those drivers as device drivers.

The second kind of supported device drivers are drivers running inside some USB device to
control the behaviour of the device. These drivers are usually used in USB devices that are
implemented as embedded Linux systems. To distinguish their name from the device drivers
running on the host, these drivers are called USB gadget drivers. In the following two sections,

33

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 34

both kinds of drivers will be introduced starting with the device drivers running on the host.

USB Core Subsystem

The main component of the USB architecture in the Linux kernel is the USB core subsystem
[24]. It connects the device drivers with the host controller drivers. Figure 3.1 gives an overview
of the USB core subsystem and its connected components.

USB core

USB device drivers

USB host controllers

VFS

subsystem

Network

subsystem
...

TTY

subsystem

Lower API

Upper API

Kernel

subsystems

Figure 3.1: Linux USB core subsystem

The USB core has different responsibilities inside the driver architecture. It provides utility
functions used by device drivers and host controller drivers to make their code as simple as
possible. Additionally, it includes USB device drivers with an abstract interface to transparently
access the hardware through any host controller connected to the USB core subsystem. The USB
core can be divided into a lower part and an upper part with each part providing some specific
API for the connected drivers. The lower part is used by the host controller drivers, while the
upper part connects to the actual USB device drivers. The device drivers are free to utilize every
kernel subsystem to provide their service.

Data is passed between the different drivers in the kernel using a data structure called the USB
Request Block (URB). URBs are sent and received asynchronously by the actual USB device
drivers to and from the endpoints of the devices. On their way to the endpoints, they pass
through the USB core subsystem and host controller drivers. Each endpoint has a queue of
URBs. This allows the device driver to submit new URBs before other URBs for the same
endpoint have finished. The completion of a URB is signaled by the use of callback functions.
URBs contain all of the information necessary to perform a specific data transfer. Figure 3.2
shows the transfer of an URB from the device driver to the host controller driver. First, the
URB is created by the USB device driver. It’s then assigned to a specific endpoint on a specific
device. The URB is then transferred to the URB core, which is responsible to pass the URB to
the correct host controller driver. The host controller driver processes the URB and carries out
the USB transfer with the USB device. The device driver which initially submitted the URB is
notified of the successful completion of the transfer by the use of a callback function.

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 35

USB device driver

URB à EP x

USB host controller

driver

USB core

Callback

function

USB device

Figure 3.2: URB transfer passing through the USB core subsystem

Device drivers register at the USB core subsystem. Each device driver needs to provide some
functions that are used by the rest of the USB core subsystem to control the device driver. Entry
points to the functions are provided in the USB device driver structure. This structure is passed
by each USB device driver to the USB core when it registers itself. Figure 3.3 shows some of the
more important parts of the device driver structure.

The first field specifies the name of the USB device driver and is just some text string. The next
two fields are function pointers to functions provided by the device driver. These two functions
are used by the subsystem as entry points into the driver. They must be provided by every USB
device driver. The probe() function is called whenever a new device is attached to the bus, which
the respective driver should handle. Inside the probe() function, a device driver can do some
last checks to see if the corresponding device can be really handled by this driver. After that, the
device driver is responsible to create a new data structure for this instance of the device inside
this function. The disconnect() function is called whenever a device is disconnected, which
was previously bound to the driver. The device driver needs to deallocate all resources that were
used for this instance of the device in this particular case. The next field is a function pointer to
an ioctl() function provided by some device drivers. This function is only provided by device
drivers that want to communicate with user–mode applications directly (see the description of
the usbfs file system below). The last two fields of the device driver structure are pointers to
additional structures. The first one points to a structure of supported file operations, which is
used by some device drivers providing file access. The second structure is called the device ID
table. Its purpose is to define, which devices should attach to this driver. It is described in detail
in Section 3.1.2.

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 36

USB device driver name

probe() function

disconnect() function

Supported file operations

ioctl() function

Device ID table

read()

write()

open()

mmap()

...

...

...

......

Figure 3.3: USB device driver structure

The USB core subsystem also offers a few functions to the device drivers. These include func-
tions for selecting configurations and interfaces or functions for receiving different kinds of USB
descriptors.

Host controller drivers also register at the USB core subsystem. They are responsible for handling
the hardware details of performing a USB transaction and receive URBs from the device drivers
through the USB core subsystem and perform the respective transaction. When they successfully
finished the requested transaction, they signal the completion to the device driver by running
the associated callback function.

Most USB device drivers are kernel–mode drivers. They are either statically linked into the
kernel or compiled as separate kernel modules that can be dynamically loaded into the kernel.
However, user–mode USB device drivers are possible as well. They utilize the USB device file
system (usbfs). This is a file system that provides all the needed hardware details of attached
USB devices to user–mode applications. The usbfs file system can be mounted at some directory
such as /proc/bus/usb/ where it represents each attached USB device as a group of filenames.
Even USB devices, which don’t have a corresponding device driver loaded, show up in the usbfs
file system. By using ioctl() requests, a user–mode process can perform USB operations on
the respective devices. Normally, user–mode processes don’t access those files directly but use
some USB user–mode libraries such as libusb [25] or jusb [26] instead.

Linux–USB Gadget API Framework

The Linux–USB Gadget API Framework [27] is a device driver framework inside the Linux kernel,
which allows to program the USB device instead of the host. This framework makes it possible
for embedded devices running Linux to act in the USB device (slave) role. It’s available in the
Linux kernel’s 2.6 series as well as in version 2.4.23 and later. Embedded devices only need a
USB peripheral controller to make use of the framework. Figure 3.4 shows a Linux–based USB
device connected to a USB host. The USB peripheral controller is basically the complement of
the USB host controller. There are no restrictions with respect to the kinds of devices that can
be developed.

The framework is organized in three layers inside the kernel. From top to bottom they are:

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 37

Host controller driver

USB host

Device Drivers
Device Drivers

Device drivers

Peripheral controller driver

Device Drivers
Device Drivers

Gadget drivers

Linux-based USB device

Figure 3.4: Linux–based USB device connected to a USB host

1. Upper Layers

2. Gadget Drivers

3. Peripheral Controller Drivers

The peripheral controller drivers represent the lowest layer in the kernel. This layer is the only one
that talks directly to the hardware of the peripheral controller and abstracts all the hardware
details. The peripheral controller driver is responsible for handling all of the endpoint data
transfers between the peripheral controller and the gadget drivers. Only a small subset of the
standard USB control requests are handled by the peripheral controller driver itself. Everything
else, especially control requests to receive descriptors or set configurations, are passed to the
higher layer gadget drivers.

Gadget drivers implement hardware–neutral USB functions. The bottom part of the gadget
drivers utilize the peripheral controller drivers underneath. Responsibilities of the gadget drivers
include the handling of setup requests from the host and returning descriptors and configurations.
All endpoints are configured by the gadget driver, which also manages all IN and OUT transfers
for the endpoints. Additionally, the gadget drivers are responsible for setting configurations and
interfaces. The top part of the gadget drivers either connect to one or more of the upper layers
in the kernel or directly to user–mode.

The upper layers represent every kernel layer that can be used by a gadget driver. This can
be the network subsystem, the file system, or any other protocol stack inside the kernel. The
gadget drivers use those upper layers to implement their real functionality. The upper layers act
as producers and consumers of the data that passes through the gadget driver.

The Gadget API Framework has support for lots of different peripheral controllers. Among
multiple highly–integrated processors, there is also a software–only controller called dummy hcd.
When using this controller driver, any loaded gadget driver will attach to the local system. Its
main purpose is to allow developers to build and test gadget drivers, without the need to buy a
hardware peripheral controller.

The framework already includes some gadget drivers, such as a file backed storage driver, a serial
driver, or a MIDI driver. The usual gadget driver is running in the kernel. However, it’s possible
to build gadget drivers running completely in user–mode. For this purpose, the gadgetfs kernel

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 38

driver is included. It provides a file system, which when mounted, can be used by user–mode
processes to communicate with the Gadget API Framework.

3.1.2 Enumeration

When a USB device driver is loaded, it registers with the underlying bus driver. The bus driver
keeps a list of currently registered device drivers. Through the process of registration, the USB
core is informed about some details of the device driver, which allows the USB subsystem to
integrate the driver and make use of it. Information passed to the USB core include:

• A short name of the device driver for purposes of identification

• A probe() callback function, which is called for every attached device that is handled by
this driver.

• A disconnect() callback function, which is called for every device that is detached from
the bus.

• A device ID table, which is used to identify the devices that should be handled by this
device driver.

The device ID table consists of multiple match–specifier entries. Each match–specifier entry spec-
ifies some information to match against and a bit field that indicates which provided information
should be matched against.

A really simple match–specifier in the device ID table only includes a single vendor and product
ID and a bit field that specifies only the vendor and product IDs should be matched against.
Yet match–specifiers are not restricted to those elements (see below for a complete list). Even
wildcard match–specifiers could be created, which would match against any USB device attached.
In such a case, the drivers probe() function should check if the device should really be handled
by this driver.

Matching is done in order of appearance in the device ID table. So entries appearing at the top
of the table have a higher priority than entries appearing at the bottom. Device–specifiers range
from really specific ones to the most general ones. In the following, we will examine the possible
match–specifiers starting with the former ones.

The most specific match–specifiers use data from the USB device descriptor. This includes the
vendor ID, product ID, and possible product revision numbers. These kind of match–specifiers
are mostly used to assign product–specific device drivers as opposed to class drivers. Slightly more
general matches are against the device class, the device subclass, or the device protocol numbers.
Those match–specifiers are used for single–function devices where each interface doesn’t have its
own class. The most general matches are against the interface class, the interface subclass,
or the interface protocol numbers. These matches let the driver bind to every interface of a
multi–function device.

For more information about the matching process, the USB core function usb_match_id() inside
the Linux kernel sources can be consulted. It contains all of the logic pertaining to the process
of identifying devices supported by a device driver.

When a new USB device is attached to the bus, the bus driver iterates over its list of registered
device drivers to find a matching driver that should service the attached device. Each interface

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 39

provided by the USB device could need a different driver. Thus, the matching process is done
separately for every provided interface. The USB core does the actual matching process by using
the device ID table provided by the device drivers during the process of registration. When a
match is found, the provided probe() function of the device driver is called. Inside the probe()
function, device drivers have a last chance to check if they really want to attach to the given
device. The device driver then allocates and initializes some device structure used for this
instance of the device and sets up that state of the device to make it functional. This includes
setting up and starting the endpoints.

USB device drivers statically linked into the kernel are automatically registered in the USB
core and thus are automatically used when a supported device is attached. Kernel modules
on the other hand, are only registered when they are loaded into the kernel. This prevents
USB devices from working when they attached to a system where the corresponding kernel
module was not previously loaded. To deal with this problem, the Linux hotplugging subsystem
was introduced. It is enabled by the kernel compile switch CONFIG_HOTPLUG. When the Linux
hotplugging subsystem is activated, the kernel creates the new file /proc/sys/kernel/hotplug
inside the proc file system. This entry contains the pathname to the kernel hotplug helper

program, which is a user–mode application chosen by the user. This is usually just set to
the default kernel hotplug helper /sbin/hotplug or left blank on newer Linux distributions as
explained below. This user–mode application can be invoked by any kernel subsystem when the
kernel wants to report configuration changes. The first argument passed to this application is
always the name of the kernel subsystem that received the initial event. In the case of the USB
subsystem, this is just the string usb. Additional arguments and environment variables can be
set as needed but are all optional. In the case of USB, configuration change events are generated
for the attachment and removal of USB devices. Table 3.1 lists all environment variables set for
the called user–mode application.

Environment variable name Content
ACTION “add” or “remove”
PRODUCT USB vendor, product, and version codes (hex)
TYPE Device class codes (decimal)
INTERFACE Interface 0 class code (decimal)
DEVICE* Pathname of the device in the USB device file system
DEVFS* Mount point of the USB device file system

Table 3.1: List environment variables passed to the kernel hotplug helper program

Environment variables marked with a trailing asterisk are only set if the USB device file system
usbfs is configured in the kernel. The called kernel hotplug helper is usually configurable in
user–mode. Depending on what application is used, tasks include loading needed kernel modules
and invoking driver–specific setup scripts.

Since letting the kernel call into user–mode directly was not considered such a good design,
starting with kernel version 2.6.14 a new mechanism that was based on the udev system [28]
was introduced. This new mechanism should replace the old functionality. Instead of letting
the kernel call some user–mode application directly, a kernel netlink socket was used to send
out kernel device events. The user–mode daemon udevd listens on the netlink socket and acts
upon receiving those events. udevd is highly configurable by the use of certain rules. The system
administrator can add new rules that perform different tasks. There are multiple things a rule
could do. Different actions could be performed, such as loading a new kernel module with a

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 40

needed driver. Additionally, events can just be passed on to some other subsystem, such as
the Hardware Abstraction Layer (HAL) [29]. HAL builds upon the udev system to maintain a
complete picture of the various hardware connected to the system. It provides some hooks, which
can then be used by system– and desktop–level software to act accordingly. For example, when
a new USB mass storage device is attached to the system, the device could be automatically
mounted and a new window could be displayed showing the content of the file system to the
user.

There are a few other solutions for automatically loading needed kernel modules, which are either
based on the Linux hotplugging subsystem or are using other mechanisms to detect new device
attachments. Nevertheless, the mechanism explained above is currently the most common one
in use. Which mechanism is used to notify the user–mode of hardware device changes and which
specific applications are used to handle the USB device attachment and detachment events is
highly dependant on the Linux distribution used.

3.1.3 Supported Class Drivers

Every USB device driver that is either statically compiled into the kernel or is configured as
a loadable kernel module can be used on a Linux system. Which drivers are actually enabled
depends on the Linux distribution. Because of that, we list any USB class driver included in
the Linux kernel. Device drivers marked as EXPERIMENTAL in the Linux kernel are indicated
by a trailing asterisk. This could hint that such drivers are not so widely used since Linux
distributions may choose to keep those drivers disabled. Table 3.2 lists all USB class drivers [30]
included in the Linux kernel 2.6.24.

Class specification Driver name Class code
Hub class (Part of usbcore) 0x09
Human interface devices (HID) usbhid 0x03
Communications device class, ACM cdc-acm 0x02
Communications device class, Ethernet usbnet 0x02
USB Audio class snd-usb-audio 0x01
MIDI device class snd-usb-audio 0x01
Printing class usblp 0x07
Mass storage class (MSC) usb-storage 0x08
IrDA Bridge device class irda-usb* 0xfe
Bluetooth class hci_usb 0xe0

Table 3.2: USB class drivers included in Linux kernel 2.6.24

Some USB classes are supported by user–mode drivers, which can be obtained elsewhere. These
are not included in the list. In addition to the USB class drivers, the Linux kernel contains a
lot of other vendor USB drivers. For a complete list of supported drivers, refer to the kernel
configuration of a recent Linux kernel.

3.2 Mac OS X

This section will focus on the latest release of Apple’s operating system Mac OS X.

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 41

3.2.1 Driver Architecture

While Mac OS X is in parts based on Mac OS 9 and FreeBSD, the device driver model was
completely redesigned. The reason for this was the lack of desired features in both device
driver models. The device driver model of Mac OS 9 was lacking support for operating system
features introduced with Mac OS X, such as memory protection, preemptive multitasking or
multiprocessing. The device driver model of FreeBSD offered those features but was lacking
other features considered important for Mac OS X. Those features included automatic device
configuration, driver stacking, power management and the dynamic loading of device drivers [31].

The I/O kit framework was introduced with Mac OS X, which promised to provide all of those
features. It is an object–oriented framework that can be used to develop device drivers on Mac
OS X. It is provided as part of the kernel development kit (KDK). The I/O kit framework can
be used to develop kernel–mode drivers and the corresponding user–mode applications to access
those drivers. It consists of multiple components, including different frameworks, libraries, tools
and other resources for creating device drivers for Mac OS X. The following frameworks and
libraries are provided:

• Kernel/IOKit is a library used for the development of kernel–mode device drivers. Its
headers can be found at Kernel.framework/Headers/IOKit.

• Kernel/libkern is a library containing classes, which can be used for general kernel program-
ming tasks. It provides commonly needed functions such as arithmetic/logical operations
guaranteed to be atomic, byte swapping routines and classes for common data structures.
The I/O kit is based on the libkern library. The headers for the libkern library are located
at Kernel.framework/Headers/libkern.

• IOKit is a framework, which is used to develop device interfaces. It can be found at
IOKit.framework.

The I/O kit framework is implemented in a restricted subset of C++, which is suitable for use in
a multithreaded kernel environment. Its complete source code is available as part of the Darwin
project [32]. The I/O kit consists of multiple components that are described in the following
sections.

I/O Kit Families

An I/O kit family is a C++ class providing software abstraction to multiple devices of a specific
type. There are I/O kit families for all kinds of devices. A separate I/O kit family exists for USB
devices. I/O kit families include code for common tasks, which basically needs to be performed
by every device driver of a specific class.

Drivers

There exist basically two kinds of driver objects in the I/O kit framework.

Device driver objects are the actual drivers for specific hardware devices or services. By the
use of inheritance, device drivers become members of specific I/O kit families, while new device
drivers can concentrate on the device specific tasks instead of duplicating the work of all other

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 42

device drivers of the same class. Driver objects are created as kernel extensions (KEXT) and are
stored in most cases in the extensions folder /System/Library/Extensions.

Nub objects are the other kind of driver object in the I/O kit framework. They provide commu-
nication channels for device driver objects to the underlying bus. A nub is an object published
by the family of the communication bus where the device is attached. Device drivers inherit
from a family class and communicate through the use of a nub object. It’s the main way of
communication for the device driver. Every form of I/O between the device driver and the bus
passes through the nub object. Nub objects are sitting between every driver object and connect
them. Figure 3.5 gives a simplified overview of the driver objects involved when a single USB
device is attached to a USB host controller that is connected to the systems PCI bus. The device
driver objects are all connected by the use of nub objects.

PCI bus

controller driver

USB host

controller driver

USB device

driver

PCI

device

nub

USB

device

nub

Figure 3.5: Driver objects connected through nub objects

Another responsibility of the nub object is to match newly attached devices against drivers to
load the correct driver. See Section 3.2.2 for all details related to the loading of device drivers.

I/O Registry and I/O Catalog

The I/O registry is a dynamic database that records every driver object and the relationships
between all objects. Each driver has to register in the I/O registry to work with the I/O kit.
When a new USB device is attached or removed from the system, the I/O registry is immediately
adjusted to reflect the current situation of loaded drivers. The I/O registry only resides in system
memory. It is not stored on disk nor is it archived over reboots. The I/O registry is structured
as an inverted tree. Each node of the tree represents one of the driver objects. It is either a
device driver or a nub driver object. The I/O registry can be accessed from user–mode through
functions exported by the I/O kit. User–mode processes use this functionality to communicate
with attached devices.

The I/O catalog is another dynamic database working closely together with the I/O registry. It
contains all device drivers, available on the whole system. Currently loaded and unloaded drivers
are stored in the I/O catalog.

Device Interfaces

Most device drivers run in kernel–mode. To access an attached USB device from user–mode, the
kernel provides so called device interfaces. A device interface is a plug–in interface between the
kernel and a user–mode process. It adheres to the standards of the plug–in architecture, which
is defined by the Core Foundation Plug–in Services (CFPlugIn). The kernel acts as the host of
plug–ins and provides well–defined I/O kit interfaces to those. A few plug–ins (device interfaces)
are provided by the I/O kit framework, which can be used by user–mode processes. Figure 3.6

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 43

shows the communication between a user–mode application and a kernel device driver through
a device interface.

User mode

Kernel mode

Application

USB host

controller driver

Device interface

USB device nub

Figure 3.6: Application controlling a USB device from user–mode

To obtain a device interface, a user–mode process does a search in the I/O registry. This process
is called device matching. A device interface provides a user–mode process with a table of function
pointers. By calling those functions, a user–mode process can exchange data with the kernel.
Inside the kernel, a device interface can be considered just another driver object. The nub object
of the respective bus provides the device interface.

Another possibility for user–mode processes to communicate directly with attached devices are
POSIX device files. But this mechanism is not used for USB devices and thus not further
discussed.

3.2.2 Enumeration

One task of the nub objects is to provide matching services, which allows the I/O kit to assign
the correct driver to an attached device. Starting with Mac OS X, device drivers are only loaded
when a corresponding device is attached. Before Mac OS X, device drivers were pre–loaded
whether or not a device of that kind was already attached.

To allow the I/O kit to match attached devices against available device drivers, each device
driver provided as a loadable kernel extension must provide one or more personalities. A person-
ality specifies the kind of devices that can be handled by the driver. The personality is stored
in XML matching dictionaries that are defined in the information property list (Info.plist) in-
side the KEXT bundle of a driver. The information property list stores contents, settings and
requirements of the driver. XML matching dictionaries are structured as key–value pairs of
XML tags. The <key> tag specifies the name of the key. The value is specified inside tags that
identify the type of the data. Examples are <integer>42</integer> or <string>Some string
</string>. There are a few important keys that must be specified in each device driver. The
IOProviderClass key is one of those. Its value identifies the nub class where the driver should

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 44

attach.

All match keys of a personality must match in order to match the whole personality. There are
several causes for a driver to have multiple personalities. There could be multiple versions of
a device that should be handled by the same driver. Another reason for multiple personalities
could be a USB device with multiple interfaces where a separate personality would be provided
for each interface. Although a device driver can have multiple personalities, the match of a single
personality forces the loading of the corresponding driver.

Figure 3.1 shows an example of a XML matching dictionary with two personalities. It’s a
shortened version directly taken from the AppleUSBAudio driver. The first personality called
AppleUSBAudioControl would match if both of the USB descriptor fields bInterfaceClass and
bInterfaceSubClass are set to 1. The second personality also includes the product and vendor
IDs for the matching process.

When a new USB device is attached to the system, the USB host controller driver detects the
event and creates a new nub for each detected USB device. The I/O kit then starts the device
match process. Values needed for the matching are extracted from the USB descriptor. The
matching process consists of three steps. The process starts with a list of lots of potential drivers
and is slowly decreased by every step until the perfect match is found. Each step of the device
matching process is explained below:

1. Class matching: First, the I/O kit requests a list of all device drivers with the correct class
type from the I/O catalog. In the case of a USB device, all device drivers with a class type
of “USB” are put into the pool of potential device drivers.

2. Passive matching: The personality of each remaining device driver is matched against the
attached device. Every driver that doesn’t match is removed from the list.

3. Active matching: Every remaining driver probes the attached device to check if it can serve
it. This is done by calling the drivers probe() function with a reference to the nub of the
attached device. The probe() function communicates with the device through the nub to
decide if the driver really can control the device. The driver then returns a probe score
that indicates the ability of the driver to control the device. The probe score is a signed
32–bit integer, which is initialized to a default value in the personality of a driver or set to
0, if it’s not defined there. It can be adjusted by the driver inside the probe() function.
The highest probe score represents the best match. After the probe() function of every
remaining driver is called, the I/O kit sorts all device drivers using their probe score.

After the last step of the driver matching process, the I/O kit chooses the device driver with
the highest probe score and tries to start it. If the driver is successfully started, it is added to
the I/O registry and the matching process is done. When starting the driver fails, the driver
with the next best probe score is attempted to be started. This process continues until a driver
successfully starts up or no more potential drivers are remaining, in which case no driver is
loaded.

3.2.3 Supported Class Drivers

Mac OS X includes several USB class drivers that are provided as kernel extensions. These are
loaded when a matching device is attached at the system. Table 3.3 lists all USB class drivers
included in Mac OS X 10.5.

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 45

1 <key>IOKitPersonalities </key>
2 <dict>
3 <key>AppleUSBAudioControl </key>
4 <dict>
5 <key>CFBundleIdentifier </key>
6 <string >com.apple.driver.AppleUSBAudio </string >
7 <key>IOClass </key>
8 <string >AppleUSBAudioDevice </string >
9 <key>IOProviderClass </key>

10 <string >IOUSBInterface </string >
11 <key>bInterfaceClass </key>
12 <integer >1</integer >
13 <key>bInterfaceSubClass </key>
14 <integer >1</integer >
15 </dict>
16 <key>AppleUSBTrinityAudioControl </key>
17 <dict>
18 <key>CFBundleIdentifier </key>
19 <string >com.apple.driver.AppleUSBAudio </string >
20 <key>IOClass </key>
21 <string >AppleUSBTrinityAudioDevice </string >
22 <key>IOProviderClass </key>
23 <string >IOUSBInterface </string >
24 <key>bConfigurationValue </key>
25 <integer >1</integer >
26 <key>bInterfaceNumber </key>
27 <integer >0</integer >
28 <key>idProduct </key>
29 <integer >4353</integer >
30 <key>idVendor </key>
31 <integer >1452</integer >
32 </dict>
33 </dict>

Listing 3.1: Example of a XML matching dictionary containing two personalities

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 46

Class specification Driver name Class code
Bluetooth class AppleUSBBluetoothHCIController 0xe0
IrDA Bridge device class AppleUSBIrDADriver 0xfe
Hub class AppleUSBHub 0x09
Human interface device (HID) IOUSBHIDDriver 0x03
Communications device class, Ethernet AppleUSBCDC 0x02
Communications device class, Serial AppleUSBCDC 0x02
Mass storage class (MSC) IOUSBMassStorageClass 0x08
USB Audio class AppleUSBAudio 0x01
MIDI device class AppleMIDIUSBDriver 0x01

Table 3.3: USB class drivers included in Mac OS X 10.5

In addition to the provided class drivers, OS X provides several vendor drivers. A complete list
of all provided kernel extensions can be found in the directory /System/Library/Extensions.

3.3 Windows XP

The first Microsoft Windows operating system with reliable USB support was Microsoft Windows
98 [5]. With each new release, support was improved and more class drivers were added. Although
this section focuses on Windows XP, lots of concepts that are the same on other versions of
Microsoft Windows are explained as well. This is especially the case with Windows Vista, in
which only a few things have changed (see Section 3.4 for the differences).

3.3.1 Driver Architecture

The foundation of the Windows driver architecture is the Microsoft Windows I/O system [33].
It consists of multiple components that work together to manage all kinds of hardware devices
and provide interfaces to user–mode applications. Figure 3.7 shows some of the components of
the I/O system and their interaction. Each component is described in more detail below.

I/O Manager

The I/O manager is a main part of the I/O system. Each I/O request passes through the I/O
manager. Communication takes place using I/O request packets (IRPs). IRPs are data structures
that describe single I/O requests. Instead of passing all arguments related to a request separately,
such as buffer addresses and buffer sizes, they are stored inside an IRP and only a single pointer
to this IRP is passed inside the I/O system from component to component. Figure 3.8 shows the
path of a typical I/O request from a user–mode application to the hardware device and back.

When a user–mode application requests an I/O operation, this request first passes through
a subsystem DLL. The subsystem DLL communicates with the I/O manager in kernel–mode,
which then allocates an IRP that represents the requested I/O operation. The I/O manager sends
the IRP to the respective device driver, which extracts the data from the IRP and starts the
I/O operation with the hardware device. When the operation is complete, the device driver calls
back into the I/O manager passing back the IRP. By doing this, the device driver acknowledges

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 47

User-mode PnP

manager

User mode

Kernel mode

Kernel-mode

PnP manager
I/O manager

...

I/O system

Device drivers

INF files,

Registry

Applications

Figure 3.7: Microsoft Windows I/O system

the completed operation. When only a single device driver is involved, as in Figure 3.8, the
I/O manager marks the operation as complete and notifies the user–mode application. If more
drivers are involved, a driver can also request that an IRP should be passed to another driver.
This request is sent to the I/O manager, which then forwards the IRP to the desired additional
driver.

In addition to the previously mentioned tasks, the I/O manager also provides some I/O support
functions to the device drivers. Device drivers can make use of those to easily handle their I/O
processing. This can simplify the actual code of the device driver.

Device Drivers

Windows uses the Windows Driver Model (WDM), which is a framework for the development
of unified device drivers on the Microsoft Windows operating system. It was introduced with
Windows 98 and Windows 2000 and was intended to ease the development of new device drivers
and to provide a unified driver model. WDM device drivers are source–compatible and in many
cases binary–compatible too. There are basically two possibilities to create a WDM device driver:

• The Windows Driver Kit (WDK) [34] is a fully integrated device development system. It
contains everything needed to develop all kinds of drivers on the Windows platform. For
the development of device drivers it contains the Driver Development Kit (DDK), which
can be used to create WDM device drivers.

• Another possibility is to use one of the available driver toolkits such as WinDriver USB
Device toolkit from Jungo Ltd. or DriverWorks from Compuware Numega [5]. These
toolkits try to ease the development of a new device driver. Very simple device drivers
with no special requirements can sometimes be created even without any programming at
all.

Inside the operating system, device drivers are represented by two kinds of objects. These are
driver objects and device objects.

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 48

Subsystem DLL

User mode

Kernel mode

Application

I/O manager

Device driver

IRPIRP

USB

device

Figure 3.8: Path of a user–mode I/O request through the I/O system

Driver objects represent a single driver inside the operating system. The whole interface of the
driver is provided through this kind of object. When a new driver is loaded into the system, the
I/O manager creates the corresponding driver object. There is always only one driver object per
driver.

Device objects on the other hand represent a physical or logical device. The characteristics of a
device are stored inside the device object. As the name suggests, device objects exist for each
device attached to the computer. They are allocated by the Add-device routine (described below)
of a function driver whenever a new device is detected by the PnP manager. Every device object
has a pointer back to its corresponding driver object. This allows access to the driver interface
of a specific device object.

There are three different types of WDM drivers:

1. Bus drivers are responsible for managing a bus such as the Universal Serial Bus. Their
tasks include the detection of new device attachments and their removals. The bus driver
reports those events to the PnP manager, which then handles the events.

2. Function drivers handle the actual devices. Every function driver exports a unified driver
interface to the operating system that is utilized by the rest of the I/O system. The driver
interface includes an initialization routine (typically named DriverEntry), which is called
directly by the I/O manager when the driver is loaded. Whenever a new device is detected,
the PnP manager calls the Add-device routine of the driver interface that then allocates
a new device object. The main functionality of the function driver is provided through
multiple dispatch routines exposed through the driver interface. Dispatch routines receive

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 49

an IRP generated by the I/O manager and perform their designated task with the data
inside the IRP. Common dispatch routines include open(), close(), read() and write().

3. Filter drivers can optionally be used to influence the behaviour of a device or driver. They
sit above or below a function driver and any data passing through the function driver
passes through the filter drivers as well. By modifying the data, filter drivers can influence
aspects of the communication.

Driver object

...

Device

object

Device

object

Device

object
...

open()

close()

read()

write()

Figure 3.9: Driver object and its exposed driver interface

Plug and Play (PnP) Manager

The PnP manager is the component inside the I/O system that is responsible for detecting and
adapting to changing hardware configurations. It works together with the I/O manager and the
USB bus drivers. The PnP manager is responsible for installing and loading device drivers when
a new device is detected. The PnP manager is split up into a user–mode and a kernel–mode
component, as can be seen in Figure 3.7.

When a new device is detected on the bus, the USB bus driver notifies the PnP manager of this
event. The kernel–mode PnP manager then checks if an appropriate driver is available on the
system. If a driver is found, the kernel–mode PnP manager instructs the I/O manager to load
the driver. If no driver is found, the kernel–mode PnP manager instructs the user–mode PnP
manager to install a matching driver. Before a loaded device driver actually starts talking to the
hardware, the PnP manager has to send a start-device command to the PnP dispatch routine of
the driver. After that, the device driver is fully functional.

Driver Installation Files

Driver installation files are used before a driver is used the first time. They are often called INF
files, because they are stored with the .INF file extension. INF files basically describe a device or

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 50

a class of devices and how to install their respective driver. The most important items included
in an INF file are:

• Source and target location of driver files

• Device driver files to be installed

• Registry modifications to be done

In addition, some co–installer DLL files can be specified optionally. They are executed after the
driver is successfully installed. They can be used to customize the device installation process.
For example, a configuration window could be displayed to give the user a chance to do some
post–setup configuration.

Every device driver that comes with Windows is listed in at least one INF file. INF files are
text–based files and are by default located in the %SystemRoot%\inf directory. Even INF files
for third–party drivers are stored in this directory. When the driver is installed, the INF files
are copied there. They can be identified by their name of oem*.inf, where * is an increasing
number starting with 0. Every INF file has a corresponding precompiled INF file, which has
the file extension .PNF. The PNF files are machine–readable forms of the INF files, which allow
faster lookups.

When the PnP manager searches for a new driver to be installed, by default it only looks in the
above directory for a matching INF file. But additional paths can be specified by modifying the
registry key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\DevicePath. Even network
drives could be added there, which would allow the installation of new device drivers from a
network share.

Registry

When a new device is detected for the first time and the device driver is installed, some infor-
mation about the device is stored in the registry. This allows Windows to detect that a device
driver was already installed and load the driver directly the next time the device is attached.
Information about installed USB device drivers is spread across multiple registry keys [5]. The
most important ones are described below.

Hardware keys store information about all devices detected since the system was initially in-
stalled. They are stored below the USB enumeration key HKLM\SYSTEM\CurrentControlSet\
Enum\USB. This key contains sub–keys that the vendor ID and product ID are each a part of.
Below these sub–keys are the actual hardware keys. Each hardware key corresponds to one in-
stance of a device with the same vendor ID and product ID. The names of the hardware keys
represent the serial numbers of the devices.

A serial number is an optional per–device unique 64–byte string that is stored in the device
descriptor and is used by the operating system to distinguish different instances of the same
device.

Devices which have a USB serial number only create a single hardware key the first time they are
attached. When the same device is attached at another port, it’s identified as the same by it’s
serial number. Devices without a serial number create a new hardware key each time they are
attached to a port they were not attached before. This is because the host has no possibility to

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 51

differentiate the device from another instance of the same device because all the USB descriptors
are the same.

Each hardware key has a Class value that describes the class of the device as a string, and a
corresponding ClassGUID value that references a class key. Class keys are stored below the reg-
istry key HKLM\System\CurrentControlSet\Control\Class. Optional entries inside the class
key can influence what users will see when the device is installed. If the NoInstallClass entry
is present and not set to 0, users are not required to manually install a driver. If the entry
SilentInstall is set, installers will never show pop–ups that require a response to the user.
The UpperFilters and LowerFilters entries can be used to specify filter drivers, which apply
to all drivers of this class.

Each hardware key also references a driver key with the Driver entry. Driver keys are referenced
by a class GUID followed by a device instance number. The device instance number matches
a driver key. Driver keys are stored as sub–keys in the corresponding class key. They store
information about the drivers assigned to the instances of devices in that class. Driver keys
contain the name of their INF file that reference the device driver files.

The last registry key of interest is the service key. Service keys are stored below the HKLM\System
\CurrentControlSet\Services key. Service keys store information about the driver files. This
includes the locations where they are stored and how to load them.

Accessing USB Devices From User–Mode

User mode applications access USB devices by using a file handle. To obtain the file handle, the
application must open a specific symbolic link corresponding to the desired interface of a device.
USB device drivers expose one or more interfaces identified by a globally unique identifier (GUID),
which is a 128–bit value. To obtain the name of one of the symbolic links, the application can
call one of the Plug and Play setup functions (SetupDi*) with the desired GUID as an argument.
These functions return a device object that contains the name of the symbolic link. The filename
can be opened using the Windows function CreateFile to obtain the needed file handle. Using
the obtained file handle, a user application can then communicate with the device using Windows
functions like ReadFile(), WriteFile() and DeviceIoControl().

3.3.2 Enumeration

The enumeration process starts when a new device gets attached to the bus. The device attach-
ment is detected and the descriptors are read from the device by the USB bus driver. Using
values from the read device descriptor, a device identification string is constructed. This string
is reported to the PnP manager, which does a lookup in the registry for a hardware key.

If the device was attached before, the previously stored hardware key is found. By using the
ClassGUID value from the found hardware key, the PnP manager locates the class key in the
registry. The hardware key together with the class key give the PnP manager all the informa-
tion needed to load the corresponding driver. Lower–level filter drivers can be specified in the
LowerFilters value of the hardware key or class key and will be loaded before the function
driver is loaded. The Service value in the hardware key specifies the actual function driver to
be loaded. Upper–level filter drivers can be specified in the UpperFilters value of the hardware
key or class key and will be loaded after the function driver is loaded. All of these drivers are
referenced by their service key and are loaded by the PnP manager.

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 52

If the device was not attached before or was attached at another USB port where it wasn’t
attached before and doesn’t provide a serial number, PnP manager doesn’t find a hardware key
in the registry and delegates the task of finding a driver to the user–mode PnP manager.

The user–mode PnP manager first tries to automatically install a driver. This is done by searching
through all the INF files to find a matching driver.

Windows first uses the device identification string to look for a matching device ID. The device
ID is constructed by the HUB driver out of the vendor ID, product ID and the revision number
from the USB device descriptor. Device IDs have the following form: USB\VID_xxxx&PID_yyyy
&REV_zzzz. xxxx, yyyy and zzzz represent the vendor ID, product ID and revision number in
hexadecimal form respectively. Note that the revision is optional and can be omitted. If a device
has multiple interfaces and a different driver for each interface, a &MI_ii can be included in the
device ID, when ii specifies the interface number as set in the bInterfaceNumber field in the
interface descriptor.

When no matching device ID is found, Windows looks for a compatible ID match. Compatible
IDs are constructed out of the class code, subclass code and the protocol code from the device
descriptor. Compatible IDs have the following form: USB\CLASS_aa&SUBCLASS_bb&PROT_cc. aa,
bb and cc correspond to the bDeviceClass, bDeviceSubClass and bDeviceProtocol fields in
the device descriptor respectively.

Device IDs are usually used for third party vendor drivers, while class drivers supplied with
Windows are usually found through a compatible ID match.

To find either a device ID or a compatible ID match a ranking system is used. Every found
match is assigned a rank. Lower ranks indicate a better match. Signed drivers receive lower
ranks than unsigned ones. See Table 3.4 for possible match priorities.

Rank Signed INF file Kind of match
0 Yes Device ID matches hardware ID
1 Yes Device ID matches compatible ID
2 Yes Compatible ID from device matches hardware ID
3 Yes Compatible ID from device matches compatible ID
4 No Any match

Table 3.4: Device driver match priorities

When no match is found and the currently logged on user has administrator privileges, PnP
manager launches Rundll32.exe to execute the Hardware Installation Wizard, which gives the
user a chance to specify the location of a matching INF file. When the user doesn’t have
administrator privileges or no user is currently logged on, the user–mode PnP manager defers
the installation until a privileged user logs on.

When the best match is an unsigned driver, operating system settings decide, what will happen.
Windows either prevents the installation of the driver, warns the user and gives him the choice
what to do, or just installs the unsigned driver without any warning. In the default setting,
Windows XP will warn the user and give him the choice to install the driver anyways.

After Windows found a matching INF file, the actions in the INF file are executed and eventually
any existing class or device co–installer DLLs listed in the INF file are run by the Hardware
Installation Wizard. During this process, some information about the device is stored in the
registry in the hardware key and the class key [5]. After the driver is successfully installed, the

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 53

kernel–mode PnP manager instructs the I/O manager to load the driver.

3.3.3 Supported Class Drivers

Windows XP comes with a number of pre–installed class drivers [35]. Table 3.5 lists all class
drivers that are available on a default Windows XP installation. Driver names marked with
a trailing asterisk are not available in all installations of Windows XP. The CCID class driver
usbccid.sys ships with Service Pack 2 and the video class driver usbvideo.sys is only available
from Windows Update and thus can only be expected to be present when a video class device
was successfully attached before.

Class specification Driver name Class code
Bluetooth class bthusb.sys 0xe0
Chip/smart card interface devices (CCID) usbccid.sys* 0x0b
Hub class usbhub.sys 0x09
Human interface devices (HID) hidusb.sys 0x03
Mass storage class (MSC) usbstor.sys 0x08
Printing class usbprint.sys 0x07
Scanning/imaging (PTP) wpdusb.sys 0x06
Media Transfer (MTP) wpdusb.sys 0x06
Audio class usbaudio.sys 0x01
Communications device class, Modem usbser.sys 0x02
Video class (UVC) usbvideo.sys* 0x0e

Table 3.5: USB class drivers included in Windows XP

Windows XP does not only provide USB class drivers in its default installation. Other non–
class drivers are provided as well. For a complete list of all provided USB drivers see the
%SystemRoot%\inf directory.

3.4 Windows Vista

This section describes the USB support in Windows Vista. Although some things have changed
compared to previous versions of Windows, most of the changes only concern the API to build
new device drivers. The implementation inside the kernel has mostly stayed the same. So instead
of duplicating all the information, this section will only focus on the differences in Windows Vista
compared to previous versions of Windows. Please see Section 3.3 for a thorough description
of all the remaining parts of the USB architecture that are common to both Windows XP and
Windows Vista.

3.4.1 Driver Architecture

Windows Vista is also based on the Windows Driver Model (WDM) just like previous versions.
The Windows Driver Kit (WDK) can be used to develop device drivers. But with Windows
Vista, the WDK includes a new framework called the Windows Driver Foundation (WDF) [36].
The WDF is an object–oriented, event–driven device driver model that greatly simplifies the

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 54

development of new device drivers by providing simpler driver interfaces. Common driver tasks
such as Plug and Play (PnP) or power management that had to be handled by each WDM device
driver itself, are handled automatically in the WDF framework. This reduces the lines of code
and makes WDF drivers easier to debug. WDF drivers are compatible with Windows 2000 and
later versions. Under the hood, the WDF framework communicates with the operating system
by using the old WDM interfaces. WDF drivers don’t talk directly to the operating system
components such as the PnP manager or the I/O manager. Instead, they are talking to the
WDF framework, which then communicates on behalf of the driver with kernel components of
the I/O system as explained in Section 3.3.1. The WDF consists of two frameworks that can be
used to create different kinds of device drivers. Both frameworks are described below.

Kernel–Mode Driver Framework

The Kernel–Mode Driver Framework (KMDF) allows the development of kernel–mode drivers
that conform to the WDF model. Kernel–mode drivers are used in cases in which the driver needs
to handle interrupts, perform DMA operations, or needs access to other kernel–mode resources.

The KMDF was designed as a replacement for the WDM for driver developers. It supports nearly
all the devices and device classes the WDM supports. Many of the WDM sample drivers included
in the DDK where converted to KMDF drivers that are smaller and less complex. The KMDF
defines an object–oriented driver model. Common driver constructs are represented as objects,
which KMDF device drivers can utilize. Drivers can only interact with those objects using the
provided methods and properties. Some of those objects are created by the framework, while
some are explicitly created by the device driver itself. Device drivers utilize callback functions
to get notified of important events. The framework handles memory allocations and important
driver data structures. This allows the driver to concentrate on the device–specific details.
Additionally, the framework introduces counted Unicode strings to help prevent string–handling
errors such as buffer overflows that were introduced in Section 2.2.1. All KMDF interfaces are
designed to make the isolation of kernel–mode drivers possible in the future. Such an isolation
would allow a driver to run in a protected environment where crashes off the driver would not
affect the whole system.

All KMDF drivers have a similar structure. They all have a DriverEntry function, which is the
primary entry point of the driver. Every PnP–capable device driver has an EvtDriverDeviceAdd
callback that is called when the PnP manager enumerates a new device for this driver. Addition-
ally, KMDF drivers have one or more EvtIo* callbacks that are called to handle different kinds of
I/O requests. Those are the minimum requirements for a KMDF device driver. Everything else
is handled by the framework. Device drivers can have additional code if they want to support
more device–specific features.

User–Mode Driver Framework

The User–Mode Driver Framework (UMDF) allows the development of device drivers that are
running completely in user–mode. This presumes that the driver does not need direct access to
hardware or kernel resources such as interrupts or DMA. The benefit of a user–mode driver is
the separation from the kernel. A crash in the driver doesn’t directly affect the stability of the
kernel and thus doesn’t affect the whole system.

The UMDF tries to ease the development in the same way as the KMDF does. It offers intelligent

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 55

defaults so that a driver developer only needs to write code for the device–specific functional-
ity of the device. The framework provides everything else. Figure 3.10 illustrates the UMDF
architecture and shows two loaded UMDF device drivers.

Driver manager

User mode

Kernel mode

Applications

UMDF driver

Framework

Run-time

environment

Reflector

Kernel-mode

driver

...

UMDF driver

Framework

Run-time

environment

Reflector

Kernel-mode

driver

...

Other kernel

components

Device stack Device stack

Host

process

Host

process

Figure 3.10: UMDF architecture

Every UMDF driver runs in a separate host process in user–mode. The host process runs with
the security credentials of the LocalService account. It contains the whole user–mode device
stack, which is separated into three parts:

1. UMDF driver

2. Framework

3. Run–time environment

The UMDF driver is an in–process component object model (COM) [37] running inside the
host process and controlling the hardware from user–mode. Every host process contains the
framework, which provides the device driver interface (DDI) exposed to user–mode drivers. It is
linked in into the host process as a dynamic linked library (DLL). The run–time environment is
responsible for the host process. It manages the user–mode thread pool, loads the UMDF driver,

CHAPTER 3. USB SUPPORT IN SELECTED OPERATING SYSTEMS 56

and constructs and destroys the user–mode device stack. All I/O requests are passing through
the run–time environment that dispatches those requests. In addition it communicates with the
other components such as the reflector and the driver manager.

The driver manager is a Windows service, which is responsible for creating and managing all the
driver host processes. The driver manager service is started the first time a device is attached,
which is handled by a UMDF driver. The driver manager also responds to messages from the
reflector.

The reflector is at the top of the kernel–mode device stack. Implemented as a WDM filter driver,
it connects the top of the kernel–mode device stack with the bottom of the user–mode device
stack. I/O requests are forwarded between kernel–mode drivers and the user–mode driver host
process by the reflector. Additionally, the reflector forwards other events such as power or PnP
messages from the kernel to the driver host process. This allows the UMDF driver to participate
in the driver enumeration process and to respond to PnP events accordingly.

Applications in user–mode can’t talk directly to UMDF drivers. They access UMDF drivers
the same way they would access other device drivers. They perform I/O requests by using the
standard Microsoft Win32 File I/O API.

3.4.2 Enumeration

Device enumeration works similarly here to how it does on Windows XP. Although there are some
differences, especially in regard to the driver signing process, those changes are not relevant
for this thesis and thus are skipped. Please refer to Section 3.3.2 for details on USB device
enumeration on Windows XP and Windows Vista.

3.4.3 Supported Class Drivers

Windows Vista comes with the same USB class drivers as provided by Windows XP (see Table
3.5 for the complete list). All class drivers marked with a trailing asterisk, which where not
available on all installations of Windows XP, are now provided with any default Windows Vista
installation.

For all the USB non–class drivers provided by Windows Vista, please refer to the Windows
Vista driver store, which holds all device drivers that can be installed without user interven-
tion when an appropriate device is attached. The driver store can be found in the directory
%SystemRoot%\system32\DriverStore.

Chapter 4

Attack Vectors

This chapter first introduces different real–world attack scenarios in Section 4.1, which should
make it clear that the Universal Serial Bus can be utilized for attacks against the host system.
Section 4.2 then classifies attacks in different categories. Each category is first described in detail,
followed by some related attacks.

4.1 Attack Scenarios

In the case of the USB 2.0 standard [3], an attacker needs physical access to a system. This
might change, however, with the Certified Wireless USB (CWUSB) extension [1] that introduces
wireless USB. Although nearly every system can be broken into with enough physical access, USB
ports represent a special case. Often the system itself together with human interface devices such
as keyboards and mice are protected against unauthorized access. On the other hand, USB ports
are often considered safe to be provided to the user. In some cases, USB ports must even be
provided to the user to accomplish the task of the respective system. Hardware security tokens
are one example, which are small hardware devices that are used by users to authenticate to
computer systems or even physical buildings. Different vendors such as VeriSign, Aladdin or
SafeNet offer many different variants of such tokens. Lots of these tokens are USB–based and
thus a USB port must be provided in order for a potential attacker to have a chance to attach
a malicious USB device. The problem is that such authentication solutions are implemented in
the first place to secure systems, which have a higher need for security. By making the USB port
available to untrustworthy users, this opens up an attack vector that might give an attacker a
way into critical systems.

Another example is kiosk print systems that can be found at public places such as shopping malls.
Those systems either allow customers to print their own photos right away or to commission them
for later pickup. Photos can be provided by the customer on different kinds of storage mediums.
In most cases, those systems offer a USB port for USB mass storage devices. Kiosk print systems
are unattended and in most cases not actively monitored and thus allow an attacker to attach
malicious USB devices.

If the attacker is an employee of the company he is trying to attack, he has lots of possibilities
to unobtrusively attach malicious USB devices. In most cases, office computers are in freely

57

CHAPTER 4. ATTACK VECTORS 58

accessible for employees. The fact that most computers are locked by a login screen or screensaver
doesn’t matter all that much, because lots of the attacks mentioned in Section 4.2 even work
without any user logged in. Additionally, an employee is equipped with lots of information about
the inner workings and processes inside a company, which makes it even easier for him to be
unnoticed.

In lots of cases, the attacker himself doesn’t need direct physical access but can get his malicious
USB device attached to the USB port of a system by other means. People with legitimate
physical access to a system could be paid or bribed to act in the interest of the attacker. An
example could be any employee or facility staff member that might have a financial interest.
People could be instructed to add malicious USB devices to some systems or replace existing
devices with modified ones.

Instead of bribery, people with legitimate physical access could also be tricked to attach an
attacker–supplied device. When it comes to physical access, social engineering works very well.
When the goal of the attacker is just to get one of his USB devices attached to any computer
system inside a company, just placing a few attractive or interesting looking USB devices in the
form of USB flash drives in front of the company building might work. An employee finding one
of those could eventually take it with him and stick it into his office computer. When the target
of the attack is the computer system of a specific employee, sending a malicious USB device
by mail might work. Depending on how much money the attacker has available for the attack,
the USB device can be in original package and could have diverse appearances, ranging from a
simple USB flash drive to an exclusive mobile phone with USB connectivity.

Another interesting case, in which people could be tricked to attach a malicious USB device
to a system of interest is digital voting systems using so–called voting pens. In February 2008,
the Free and Hanseatic City of Hamburg, Germany wanted to introduce electronic voting via
electronic voting pens for the state parliament election. Due to previous changes to the election
law, counting votes for this election was expected to be complicated and time consuming. The
digital voting pen provided an opportunity to speed up vote counting. Each voting pen was
equipped with a small camera. The paper to be used for the election was filled with a special
pattern that was recorded by the camera of the pen, and then stored inside the pen. After the
voter finished voting, the pen was given back to the election supervisor, who in turn attached the
pen to a USB docking station that was connected to a computer system. The computer system
read the votes from the digital pen and stored them in anonymous form inside the system. The
critical point is the connection of the voting pen with the USB docking station. The USB docking
station is basically a USB hub and the communication directly takes place between the voting
pen and the computer system. An attacker could either replace or modify the voting pen given
to him, which would then get attached to the host system storing all the votes. A successful
attack might then be used for election fraud.

4.2 Classification of Attack Methods

Different methods of attack can be categorized based on what part of the system is being attacked
at which level. We separate attacks into the following four categories:

1. Logic attacks

2. Application–level attacks

CHAPTER 4. ATTACK VECTORS 59

3. USB stack and device driver attacks

4. Kernel subsystem attacks

Figure 4.1 gives an overview of the different components of the USB architecture.

Electrical layer

User-mode

Kernel-mode

Application

Application

Application

USB stack

Kernel subsystem

Kernel subsystem

Driver 1

Driver 2

Driver 3

Kernel subsystem

Kernel subsystem

Figure 4.1: Relation between components of the USB architecture

At the bottom, we have the electrical layer. Its purpose is to encode and decode the electrical
signals on the wire. Please note that we don’t consider attacks on the electrical layer. The
electrical layer connects directly to the USB stack, which is responsible for handling protocol
details of the USB protocol. Each device driver registers itself at the USB stack. The only
way a USB device driver can communicate with an attached device is through the USB stack.
Attacks against the USB stack and the attached device drivers are described in Section 4.2.3. To
provide their service to an attached device, in many cases device drivers don’t run in isolation
but communicate with other kernel subsystem components. For example, a USB network card
driver makes use of the network subsystem, while a mass storage device driver utilizes the
I/O subsystem in the kernel. Attacks against kernel subsystems are described in Section 4.2.4.
Additionally, USB device drivers are not only connected to different kernel subsystems. To
provide the interaction with a user, applications running in user–mode can communicate with
different USB device drivers. Thus data coming from a malicious USB device can even reach
applications running in user–mode. Attacks making use of this fact are described in Section
4.2.2. Logic attacks don’t attack any specific components of the USB architecture, but try to

CHAPTER 4. ATTACK VECTORS 60

abuse the trust relationships between the host and different devices.

4.2.1 Logic Attacks

Logic attacks don’t exploit any implementation bugs but abuse the fact that the host puts some
trust into the data it receives from different USB devices. Logic attacks are attacks that utilize
the default behaviour of the USB architecture and its implementation in the operating system to
archive remote code execution on the attacked system. Instead of exploiting any implementation
bugs, the underlying technology is used in a creative way to archive the attackers goal. Some
possible logic attacks are described below.

Malicious HID Devices

Human Interface Devices (HID) are devices that interact with a human being. HID devices are
specified in the Device Class Definition for Human Interface Devices. Obvious examples for HID
devices are mice or keyboards. But devices such as USB headsets or data gloves also fall into
the USB HID device class. Most operating systems have a class driver for USB HID devices that
handles every connected USB HID device.

USB HID devices are really simple USB devices. In addition to the mandatory control pipe,
they only require a single interrupt IN pipe. The interrupt IN pipe is used to transfer the data
from the device to the host. Transferred data is structured in input reports that can contain the
relative position change for a mouse or a pressed key code for a USB keyboard. While using the
HID device, most of the communication is unidirectional through the interrupt IN pipe.

It’s obvious that if an attacker can attach any USB device to a system, he may just connect a
standard mouse or keyboard to perform some action. But HID devices can be constructed in
any form and behaviour that deviates from the expected behaviour of usual mice or keyboards.
For example, a device could be constructed that automatically performs some mouse movements
or key presses after it is attached to a system. It could be constructed to look like a standard
USB flash drive for example. Such a device could be used for passive attacks, in which people
are tricked to attach the device to their computer. By programming such a malicious HID device
to perform the right actions, code execution could be possible just by attaching the device. The
simple protocol HID devices use further eases the actual implementation of such a device.

Windows AutoRun

The Windows AutoRun feature is a mechanism to automatically perform an action upon the
insertion of a new removable media such as a CDROM or a USB flash drive. It is used to
automatically install, configure, or launch programs supplied on a CDROM or flash drive when
the new medium is detected. To accomplish this task, an executable can be specified, which
usually resides on the media itself. This executable is automatically launched when the media is
detected.

A similar feature to the AutoRun mechanism is the Windows AutoPlay feature. When a new
media is detected, the content of the media is determined. Based on the content type, different
actions could be performed by the AutoPlay mechanism:

• Content could be played automatically. This is the case for audio CDs and other examples.

CHAPTER 4. ATTACK VECTORS 61

[AutoRun]
open=cmd.exe
shell\doit\command=calc.exe
shell\doit=Do your math

Listing 4.1: Simple example of a Windows AutoRun file

• A dialog box could be displayed prompting the user to choose between several actions.
Depending on the number of different contents found on the media, the user can either
choose from one or multiple handler applications that are appropriate for the given content.

• A standard folder view of all files could be opened automatically.

In contrast to the Windows AutoRun feature, no executable that is executed automatically
without user intervention can be specified. More details about the use and configuration of
AutoPlay can be found at the Microsoft Developer Network [38].

A medium that wants to utilize the Windows AutoRun feature must provide a autorun.inf file.
This file can also be used to adjust the AutoPlay behaviour. In particular, it can be used to
adjust which options are displayed to the user. Depending on the content of the autorun.inf
file, either the AutoRun or the AutoPlay mechanism is used, when the new media is detected.
The autorun.inf file must be placed in the root directory of the medium. The file can consist
of multiple sections. Every section is introduced by the name of the section enclosed in square
brackets. Each section can have multiple key/value pairs. One section is indispensable for the
functioning of the AutoRun feature; The [AutoRun] section. This section can contain different
keys of which the most important ones are described below. For a complete description of the
autorun.inf file format, see the MSDN documentation [39].

open: The open key specifies the path and the application that should be launched by AutoRun
when the medium is inserted.

shellexecute: This key is similar to the open key, but in addition to applications this key can
also specify data files that are opened by their default handler application. The specified
value is directly passed to the Windows ShellExecuteEx API function.

shell: This key can be used to specify a default command for the shortcut menu of the drive. The
shortcut menu is displayed when the user right–clicks on the drive’s icon. The value of the
shell key is a verb that identifies the corresponding menu command and it’s description.
The verb must be defined previously in the autorun.inf file. The shell\verb \command
key specifies the executable that will be run for that verb. The optional shell\verb key
specifies a description of the command that is displayed in the shortcut menu. If this key
is missing, verb is displayed instead. For both keys, verb is just a name for this specific
entry. The interesting thing is that the default command for the shortcut menu is not
only used for the menu but is also automatically executed when the user double–clicks on
the drive’s icon. Although not fully automatic, this may execute a binary when the user
doesn’t expect it.

Listing 4.1 shows a simple autorun.inf file that just tries to open a new command line interpreter
when the media is mounted. The last two lines add the command “Do your math” to the shortcut

CHAPTER 4. ATTACK VECTORS 62

menu. Selecting the command from the shortcut menu or double–clicking on the drive’s icon will
both startup the Windows calculator calc.exe.

According to Microsoft [40], the AutoRun feature is disabled for USB storage devices com-
pletely on Windows XP and Windows Vista. If the AutoRun mechanism is enabled or dis-
abled for other classes of devices, it depends on a specific registry key. The registry path
HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\ contains the key
NoDriveTypeAutoRun, which indicates the classes of devices when Windows doesn’t look for an
autorun.inf file. Each bit of the value indicates a driver class to be excluded from AutoRun.
Table 4.1 lists the meaning of every bit starting with the least significant bit.

Bit number Bitmask constant Description
0 DRIVE UNKNOWN Unknown drive
1 DRIVE NO ROOT DIR Devices without a root directory
2 DRIVE REMOVABLE Removable disks such as floppy disks
3 DRIVE FIXED Fixed disks, which can’t be removed from a drive
4 DRIVE REMOTE Mapped network drives
5 DRIVE CDROM CD–ROM drives
6 DRIVE RAMDISK RAM disks
7 – Reserved for future use

Table 4.1: NoDriveTypeAutoRun bits

The default value on Windows XP is 0x91. That means, in addition to USB mass storage devices,
only the DRIVE_REMOTE and the DRIVE_UNKNOWN classes are disabled for AutoRun. Starting
with Windows Vista, the NoDriveTypeAutoRun registry key does not exist anymore in default
installations but is implicitly set to 0xff effectively disabling AutoRun completely.

Although the AutoRun mechanism is not enabled for USB storage devices, there is a way to
make AutoRun work with a USB device on Windows XP. Windows XP supports the AutoRun
mechanism for the DRIVE_CDROM driver class. So to use the AutoRun feature as an attack vector,
a USB CD–ROM drive that comes with a autorun.inf file that executes a malicious executable
when attached to the system can be constructed. This attack can be easily implemented even
without special hardware or programming by modifying a U3 smart drive.

The U3 standard [41] is a proprietary standard for USB smart drives, which allows launching
applications directly from the USB drive without prior installation. U3 smart drives differ
from standard USB flash drives in that they come with a pre–installed Windows application
called the U3 Launchpad. This Windows application is automatically started when the device
is attached. The U3 Launchpad allows the launch of applications or installation of new U3
compatible applications from the Internet. To automatically start the U3 Launchpad, the U3
smart drives are constructed as composite USB devices. They attach as a CD–ROM drive and as
a mass storage device at the same time. The CD–ROM drive shows up as a read–only ISO9660
volume, which contains the autorun.inf file for starting the U3 Launchpad. The mass storage
device is used for storing additional applications and data.

A U3 flash drive can be modified to not execute the U3 Launchpad applications but instead any
attacker–chosen payload when it is attached. This attack is not new. Instructions on how to
modify such a device can be found on the Internet [42]. For our proof–of–concept attack, we used
a 1 GB SanDisk Cruzer Micro drive. The ISO9660 volume can’t be modified directly, but SanDisk
provides the SanDisk Launchpad Installer (LPinstaller.exe), which allows re–installation of

CHAPTER 4. ATTACK VECTORS 63

the U3 smart drive. It can be obtained from their website at http://u3.sandisk.com. The
installer fetches an ISO9660 image from the SanDisk server when it is run. This image will be
installed as the CD–ROM volume. The %SystemRoot%\system32\drivers\etc\hosts file on
Windows can be modified to point the DNS name u3.sandisk.com to an IP address, where we
setup a web server and provide a modified ISO image. The installer fetches the original image
from the SanDisk website1. We can download that ISO image and modify it to make any desired
changes to the autorun.inf file to load our own payload. After the modified ISO image was
stored at the web server, just running the SanDisk LaunchPad installer will fetch the modified
ISO image and store it inside the smart drive.

This gives us a device that looks like a normal USB flash drive but actually presents a CD–ROM
drive to the system, which is then allowed to make use of the AutoRun feature on Windows
XP. Windows Vista can’t be attacked this way, but it still provides the AutoPlay feature. So an
autorun.inf file with the shell keyword could be constructed to get code executed when the
user double clicks on the drive’s icon as mentioned above.

USB Packet Sniffer

The Universal Serial Bus uses a token–based packet protocol in which the host initiates all the
communication. With the USB standard up to version 2.0, every device connected to the same
bus can potentially see all the packets sent by the host to other devices. The host controller
sends the token packets at regular intervals on the bus. Amongst other things, the token packet
contains a device address and the direction of the following transaction. Each attached device
decodes the device address and does a match against its own. If the device address matches, the
device selects itself for the forthcoming transaction. Whether the device address is the source
or the destination of the following data transfer, it is indicated by the direction specified in the
initial token packet. The source then either sends a data packet to the destination or signals
that it has no data to be transmitted by sending a NAK handshake packet. After the data
was transferred, the destination acknowledges the successful reception with an ACK handshake
packet. Because of the broadcast nature of the protocol, the token packet and the data packet
of OUT transactions are sent to all USB devices connected to the same bus.

According to [5], if the USB device receives a packet in which the device address doesn’t match its
own, the device just ignores the communication. The device address match process is in almost
all cases implemented in hardware. When a packet with a matching device address is received,
the USB device stores the data in a receive buffer and triggers an interrupt. Since it’s the USB
device itself that decides if a packet was destined for it or not, nothing prevents a USB device
from accepting every packet regardless of the set device address. A USB device that acts like a
normal USB device according to the USB specification but also stores every received packet that
doesn’t match its own device address could be built. This leads to interesting possibilities for an
attacker.

To provide USB functionality, a system includes a USB host controller. But depending on the
system, more than one host controller may be present. Every host controller provides a separate
bus. With only a single host controller, all connected devices have to share the bandwidth on
the bus. Multiple host controllers can mitigate this potential bottleneck.

Since all the data packets of OUT transactions to other devices on the same bus can be read,
files transferred from the computer to any connected USB hard disk or flash drive could be

1http://u3.sandisk.com/download/apps/lpinstaller/isofiles/PelicanBFG-autorun.iso

CHAPTER 4. ATTACK VECTORS 64

eavesdropped. Any documents printed on a USB printer, while a USB sniffing device is connected,
could be silently sniffed as well. This all presumes that the USB connector to which the USB
sniffing device is attached and the one used for the device to be sniffed are connected to the same
bus.

All those scenarios target USB devices connected to external USB ports of a system. But external
devices are not the only devices using USB. Most notably wireless components, such as IEEE
802.11 or Bluetooth modules, are often internally connected to the USB bus. If the external
USB connectors are attached to the same bus as used by internal components, this could enable
an externally connected device to record all the outgoing wireless communication of the host.
Despite the use of encryption on the wireless link, data can be captured in plain text. The
encryption is in most cases directly implemented on the wireless hardware itself, which happens
after the data was already captured.

USB 3.0 implements a dual–bus architecture to stay backward compatible with USB 2.0 devices.
The old USB 2.0 bus is augmented by another bus called the SuperSpeed bus, which offers
most of the new features of USB 3.0. One change on the SuperSpeed bus compared to the old
one affects the flow of communication. Instead of broadcasting all packets to all enabled ports,
packet traffic is explicitly routed to the receiving device [2]. Packets are equipped with additional
routing information that is used by the hubs in the decision to which downstream port a packet
should be routed to reach the final device. While sniffing on the SuperSpeed bus doesn’t seem
to be possible, devices using the old bus are still susceptible to the sniffing attack.

4.2.2 Application–Level Attacks

The host can serve a USB device in two different ways. Some USB devices are only served by
the operating system running on the host. Other USB devices are handled by the operating
system but then communicate with a user–mode application running on the host. Examples for
USB devices only talking to the operating system are e.g. simple keyboards or mice. Devices
only talking to a user–mode application are e.g. USB measurement instruments. But for most
devices, the distinction between the two types is a fuzzy one. Lots of USB devices are handled by
the operating system, but can get in contact with other user–mode applications through various
mechanisms detailed below.

Every user–mode application handling data received from an external USB device increases the
potential attack surface. But what differentiates user–mode applications from other kernel com-
ponents handling the data, is that exploitation techniques for user–mode applications are far more
researched than the same techniques for kernel–mode. An attacker can use the usual exploitation
methods he’s familiar with to exploit flaws in user–mode applications. This decreases the time
for the development of a working exploit and makes user–mode applications communicating with
USB devices an attractive target.

In the following we will go into the details of some USB devices and how they can get into contact
with different user–mode applications.

Apple iTunes and iPods

All Apple iPods have been equipped with a USB connector since the third generation of iPods.
They attach as usual USB mass storage devices to a system. To manage the media files stored
on the iPod, the popular iTunes application can be used. The file system contains some control

CHAPTER 4. ATTACK VECTORS 65

data for the iTunes application and the actual media files. When the iTunes software is installed
on a Windows system, the iTunesHelper.exe application is running in the background waiting
for the attachment of an iPod. Once an iPod is attached to the system, the iTunesHelper.exe
detects this event and starts up the actual iTunes application. The iTunes application then reads
the control data stored on the file system of the iPod and does its job. Reading and parsing the
control data is exactly the point, where vulnerabilities could exist due to the nature of parsers.
If the iTunes parser for those control files had a bug, this could potentially be exploited with a
modified USB iPod device.

OS X Quick Look

Quick Look is a technology introduced in Mac OS X 10.5, enabling applications such as the
Finder or Spotlight to either display thumbnails or preview images of different kinds of files [43].
When an application is showing a listing of files to the user instead of presenting the user with
only a file name, some meta information and an icon indicating the file type, Quick Look replaces
the icon with a small thumbnail representing the content of the file. This makes it easier for
users to get an idea of the real content of files.

Quick Look can be used to display two representations of documents: thumbnails and previews.
Thumbnails are just a replacement for the usual icon. They are a little bit larger than icons
and give the user a notion of the content. The thing that makes thumbnails interesting for our
discussion is the fact that really little user intervention is required to display them. Just opening
the finder in some directory shows the generated thumbnails of those files.

The other representation displayed by Quick Look are previews. Previews are larger than thumb-
nails. They can be requested by the user to quickly catch a glimpse of the content of some
document without opening the application associated with that document type.

The Quick Look architecture consists of consumers and producers as illustrated in Figure 4.2.

Consumer

Producer

Quick Look consumer SPI

Document reader

view and panel
Client application

Document reader display bundle

Document reader display bundle

Quick Look daemon

Quick Look generator bundle

Quick Look generator bundle

Figure 4.2: Quick Look architecture

The consumer in this architecture is any client application that wants to display thumbnails or

CHAPTER 4. ATTACK VECTORS 66

previews of some documents. The producer on the other hand provides the requested image to
the consumer. The consumer consists of three different components. The main component of
the consumer is the client application itself. The document reader view and panel are usually
embedded inside the client application. They are used to display the preview content together
with some optional controls to manipulate the preview. The document reader view only provides
the place to display the preview content. The task of actually displaying the preview content
inside the view is delegated to a display bundle. Each display bundle is responsible for one
native document type. The consumer system programmatic interface (SPI) provides the interface
between the consumer and the producer. It is used by the client application to request thumbnails
or previews, and by the producer to provide the requested content back to the client application.

The producer is the Quick Look daemon quicklookd that offers an extendable plug–in architec-
ture. Some file types are natively supported by Quick Look, which means that those file formats
can be parsed to build thumbnails or previews of the content. The plug–in architecture allows
third–party applications to provide their own Quick Look generator bundles. Those bundles can
parse the application–specific file formats and can provide thumbnails and previews on request.

What makes the Quick Look architecture a good attack surface for attacks over USB is the fact
that a simple USB mass storage device can be used to store a malformed document. When the
USB device gets attached to the computer and the Finder is opened to look at the content of
the device, the document is automatically parsed by the Quick Look daemon in the background.
Due to the nature of parsers, it is very likely that a Quick Look generator for one or more file
formats may contain a bug. Those bugs could be triggered by a prepared document on the USB
flash drive. Depending on the bug, code execution might by possible just by viewing the content
of the attached USB flash drive.

Strictly speaking this attack is not a real USB attack. But it makes it clear how the attack surface
increases when taking into account the attachment of untrustworthy USB devices. In addition
to Quick Look, there are lots of other technologies which could be used for similar attacks, such
as the metadata indexing service of Spotlight [44] or the AutoPlay feature mentioned in Section
4.2.1. Basically getting any slightly complicated code (e.g. parsers) process data provided by an
untrustworthy USB device could provide a chance for an attacker to compromise the system.

4.2.3 USB Stack and Device Driver Attacks

By communicating with an attached USB device, data provided by the USB device is handled
by different software components. Malicious or unexpected data could trigger software vulnera-
bilities inside the implementation, which an attacker could potentially exploit to compromise a
system. This section first describes two of the main components of the USB architecture inside
operating systems and why they might be interesting targets for an attack. Finally, we conclude
with an example of a device driver that has the potential to be attacked.

The USB stack handles all the USB protocol details and loads the corresponding device drivers
for attached devices. The benefit of attacking the USB stack itself is that no specific USB device
driver must be installed on the system to be attacked. Even hardened systems with only a
minimum of needed USB device drivers installed could be exploited through the use of a USB
stack vulnerability. A specific version of an operating system with a vulnerability inside the USB
stack would be enough.

USB device drivers on the other hand handle specific USB devices. Potentially every USB device
driver (kernel or user–mode) can be attacked. The significant number of different USB drivers

CHAPTER 4. ATTACK VECTORS 67

makes them a target worthwhile to be considered. Additionally, lots of USB device drivers are
developed by third–party companies. It is to be expected that the quality of different USB device
drivers could differ vastly from driver to driver. Although third–party device drivers might be an
interesting target because of their differing code quality, the downside is that they might not be
installed on every system. USB device class drivers on the other hand come with most operating
systems pre–installed and thus can be expected to be found on lots of different systems.

One example for a device class driver installed on nearly every version of Microsoft Windows
is the USB mass storage class driver usbstor.sys. All device drivers in Microsoft Windows
responsible for managing a specific storage device form together the Windows storage stack [33].
Among other drivers, it contains hard–disk storage drivers. These drivers are responsible for the
low–level management of found storage devices. The hard–disk storage drivers are started by
the I/O manager (see Section 3.3.1) and are structured in a class/port/miniport architecture,
illustrated in Figure 4.3.

Class drivers

(disk.sys)

Port drivers

(usbstor.sys)

Miniport drivers

...

Partition

manager

Figure 4.3: Windows hard–disk storage drivers

The storage class drivers implement common functionality, which can be used by all storage
devices of a specific device type independent of the bus they are attached to. Figure 4.3 shows
the disk.sys class driver that handles disks. Port drivers implement the functionality needed
for a specific bus. The usbstor.sys port driver that handles USB storage devices is shown in
Figure 4.3. Microsoft supplies the storage class drivers and the port drivers. Miniport drivers
are supplied by third parties and are used to handle hardware–specific details.

Because of the complexity of the Mass Storage Class (MSC) specification and all the underlying
protocols and different driver components involved, this class driver might provide an interesting

CHAPTER 4. ATTACK VECTORS 68

target for attacks.

4.2.4 Kernel Subsystem Attacks

The USB stack and device drivers are not the only components inside the kernel that are pro-
cessing data received from external USB devices. This section shows that other components of
the kernel can also get in contact with data from external USB devices, although they might not
be associated with the USB protocol at a first glance. To demonstrate our point, we close this
section with an example of a device driver not related to USB that could get easily in contact
with data supplied by USB devices.

One design goal of USB that is even reflected in its name by the word “universal” is its multi–
purpose use. USB can be used to connect lots of different kinds of devices to a host computer.
Most USB device drivers don’t work in isolation. Depending on the type of device, the USB
device driver on the host might make use of multiple other kernel components or subsystems to
serve the device. This is illustrated in Figure 4.1. Examples for some subsystems, USB devices
might communicate with, are:

• Disk subsystem

• Network subsystem

• Audio/video subsystem

• Protocol stacks

The last item illustrates the point that basically any new class of communication device at-
tachable through USB increases the attack surface by another protocol stack. Communication
devices for protocols like IrDA, 802.11 or Bluetooth all exist as USB variants. If a host has the
respective device drivers installed, the Universal Serial Bus offers the possibility for potentially
malformed data to reach those protocol stacks.

So data arriving on the bus can traverse through all those different kernel components. With
usual USB devices this is not a problem, because most of them at least minimally adhere to
some standard so the kernel knows more or less what to expect from specific USB devices.
But an attacker can build a USB device that deviates from the expected behaviour and sends
malformed data. This presumes that all those kernel components do enough validation of the
data they receive. There might be problems with kernel components that where not designed
with the thought in mind, and that potentially malformed data could reach them. USB provides
an attacker with the ability to reach those kernel components. By providing malformed data
to those components, using a custom–build USB device, an attacker might be able to trigger
bugs inside the kernel, leading to vulnerabilities. Exploiting any of those vulnerabilities, could
result in arbitrary code execution inside the kernel and thus allow an attacker to compromise
the system.

One example for a kernel component, which is not directly related to the USB protocol, is the
disk.sys class driver already mentioned in Section 4.2.3. This driver is responsible for managing
all kinds of disk–based storage devices. Although it is not directly related to the USB protocol,
USB mass storage devices make use of it to provide the user the ability to access the file system
of such USB devices. So a malicious USB device identifying itself as a mass storage device can
now easily provide arbitrary malformed data to the host, which is then handled by the disk.sys

CHAPTER 4. ATTACK VECTORS 69

class driver. Depending on the data provided, it might not be handled correctly in all cases and
might lead to vulnerabilities.

Chapter 5

Implementation

In Chapter 4, we started off to list potential attack vectors against the Universal Serial Bus. To
actually demonstrate that the mentioned attacks are not only of a theoretical nature, we needed
a way to implement some of them. Since there was no available solution to assess the security of
USB stacks, we started by writing a simple USB fuzzer implemented inside a peripheral controller
driver of the Linux–USB Gadget API Framework introduced in Section 3.1.1. This allowed us to
fuzz the communication of every available Gadget driver provided with the framework. Although
this worked and led to most of the results in this thesis paper, it has the big disadvantage that
only device drivers with corresponding Gadget drivers can be tested. The development of a new
Gadget driver is very time consuming and is comparable with the development of a new USB
device driver.

We needed a more universal approach, which would allow us to assess the security of more USB
device drivers without the restriction of available Gadget drivers. Despite the fact, that our
implementation is focused on fuzzing, being able to use it for other attacks besides fuzzing would
be beneficial too. This resulted in the implementation described in this chapter.

In Section 5.1 we show the layer at which we are fuzzing and explain our decision. After listing
all the prerequisites we expect from our fuzzer in Section 5.2, we describe the general design
in Section 5.3. Section 5.4 then goes into detail about how each component of the fuzzer was
implemented.

5.1 Layers to be Fuzzed

The first things we have to get straight is the layer at which we want to fuzz. There are basically
two possibilities where we could intervene in the flow of communication. We could either fuzz
on a packet level or we could fuzz the endpoint data traveling through the USB pipes.

Fuzzing on a packet level has the benefit that we are fuzzing at a really low layer, but this
also means that we don’t have much context of the data we are fuzzing. So it’s more of a blind
fuzzing approach. Another thing to keep in mind when fuzzing at the packet level is the fact that
each packet is protected by a cyclic redundancy check (CRC). We have to recalculate the CRC
after each modification. If we skip this step, the CRC won’t match anymore and the host will
in most cases just ignore the packet [3]. Although fuzzing at this level could potentially reveal

70

CHAPTER 5. IMPLEMENTATION 71

vulnerabilities in the lowest–level components involved, such as the host controller firmware itself,
it isn’t the ideal place for our goal of finding vulnerabilities in the USB stack and device drivers
of a host.

Fuzzing the endpoint data that traverses through USB pipes is another possibility. Fuzzing at
this level has the big advantage that we can choose to only fuzz specific pipes. Depending on the
concrete device, each pipe with its corresponding endpoint is used for a specific task. Fuzzing
specific pipes allows narrowing down the code, which is being fuzz–tested. For example, the
default control pipe (endpoint 0) is used with every USB device to exchange control and status
information. So by fuzzing the default control pipe, there is a good chance that discovered
vulnerabilities are inside the USB stack or in the device driver code responsible for handling
the attachment of a new device. Fuzzing other pipes could reveal vulnerabilities in other kernel
subsystem components, which are using the data from those pipes. In addition, we don’t have to
care about any USB checksums, because those will only be created on a packet level. Fuzzing on
a pipe level modifies the data, before it is split into multiple packets. For the above mentioned
reasons, we have decided to fuzz at the USB pipe level.

5.2 Implementation Prerequisites

We have the following four prerequisites for our fuzzer:

1. Fuzzing should be automatic. We don’t want to manually attach and detach devices. As
such, automatic and repeated attachment and detachment is a must.

2. Our fuzzer should be able to send malformed or invalid data in the hope to trigger some
bugs in the software implementation of the host. This implies, that the data sent might
deviate from the USB specification in some cases. So the underlying software shouldn’t
restrict us, in what we are able to send.

3. The fuzzer should be implemented in software. To actually find new vulnerabilities, a
software–solution would be beneficial, since changes to the fuzzer could be done in a more
flexible way. In particular, a software solution in user–mode would ease the fuzzing process
even more and provide better control over the whole process. Although we strive to im-
plement the fuzzer in software, a hardware solution is needed later for the implementation
of the final attack. It would be a benefit, if the build fuzzer could directly be transformed
into a hardware proof–of–concept device without many modifications.

4. To fuzz the code of specific USB device drivers, the USB fuzzer should be able to emulate
different kinds of devices without much development effort. For example, to fuzz the code
of a HID device driver, the fuzzer should attach to the host claiming to be a HID device
such as a mouse or keyboard and then start to send malformed data. The fuzzer shouldn’t
be restricted to different classes of devices.

5.3 Design of the Fuzzer

We have to choose between a generation–based and a mutation–based fuzzer. The problem
with a complete generation–based USB fuzzer is that development is very time consuming. To

CHAPTER 5. IMPLEMENTATION 72

successfully communicate with a single USB device driver on the host, simply providing the
correct vendor and product ID inside the USB device descriptor is not enough. The emulated
USB device has to act in conformance to the expectations of the device driver. This means it has
to provide the expected USB descriptors, provide the expected endpoints and has to send valid
data on each pipe connected to the endpoints. If good code coverage is desired, development of
such an emulated USB device is nearly equivalent to the development of a complete USB driver.
This would have to be done for every driver class to be tested. A mutation–based USB fuzzer on
the other hand can rely on the communication from a real USB device and just manipulate the
valid communication. So a mutation–based fuzzer is the ideal choice for quickly getting some
first results.

To build a mutation–based USB fuzzer, we need to let a real USB device talk to a device driver
on the host. Then we can both actively manipulate selected transfers while the communication
takes place or we could just log the communication of the device and replay it at a later point
in time.

So our man–in–the–middle approach can be separated into three components:

1. Receiving Component

2. Processing Component

3. Device Emulation Component

The receiving component is responsible for acquiring the initial USB packets. It either receives the
raw USB communication from an attached USB device or reads in a stored flow of communication,
which was recorded beforehand. All USB packets are just forwarded to the processing component.

The processing component conducts the optional modification or analysis of the USB commu-
nication. This is where the actual fuzzing can be implemented. The processing component can
also record a flow of communication and store it for replaying at a later point in time. The
processing component passes all the USB communication to the device emulation component.

The device emulation component forwards the USB communication it received from the process-
ing component to a connected host system. It basically acts like the real USB device.

The separation into those three components makes our approach really flexible. Although we
select specific technologies to implement each component, each component can be easily replaced
with another implementation, should the need arise.

5.4 Implementation of each Component

In the following, the implementation of each component will be described in more detail, starting
with the device emulation component.

5.4.1 Device Emulation Component

For the device emulation component, we need a way to emulate USB devices in software. There
are basically two more or less widely known frameworks for this task: The Microsoft Device
Simulation Framework [45] and the Linux–USB Gadget API Framework [27]. Both frameworks

CHAPTER 5. IMPLEMENTATION 73

allow the emulation of USB devices on the local machine without additional hardware. Together
with a virtualization solution such as VMware or Microsoft Virtual PC, this would allow us to
emulate malicious devices locally and to test the device drivers of an operating system running
as a guest inside the virtual machine. Although this would be a convenient solution, it is not
a viable option for something like a USB fuzzer. Simulated USB devices are first enumerated
by the host operating system. Only when the host successfully detects the device is it claimed
by the virtualization solution to finally pass it on to the guest operating system. When the
host operating system doesn’t successfully enumerate the device, e.g. because of some fuzzed
USB descriptors, the guest operating system doesn’t even get a chance to see the device. So
we effectively fuzz the host instead of the guest operating system. Even if the host successfully
enumerates the USB device, the device is first claimed by the virtualization solution which means
another software layer, which can cause problems if malformed data isn’t handled properly. We
learned this the hard way when VMware crashed while we where trying to fuzz–test the USB
stack of an operating system running as a guest inside VMware.

The easiest way to overcome all such problems is a hardware solution. The USB device is still
emulated in software on one machine, but instead of letting the emulated device attach to the
same machine, hardware is used to let it attach at another physical machine.

While the main purpose of the Microsoft Device Simulation Framework is to emulate devices in
software to actually develop and test device drivers, the Linux–USB Gadget API Framework is
intended for the development of device–side drivers, mainly used on embedded systems. In par-
ticular, it comes with good support for hardware chips, which can be used to actually implement
the USB fuzzer in software but connect it to the host through a hardware peripheral controller.
Since the Linux–USB Gadget API Framework has support for lots of small on–chip controllers,
an exploit for any found vulnerability could be easily implemented in any imaginable form of
enclosure using an embedded Linux system together with one of those peripheral controllers.

Another benefit of the Gadget API Framework in addition to the good hardware chip support
is the availability of its source code. Should the need arise; it gives us the freedom to make any
needed modifications.

So we finally decided to implement the device emulation component using the Gadget API
Framework. To actually let the emulated USB device attach to another host, one of the many
supported USB peripheral controllers has to be selected. We decided to use the NetChip net2280
controller. It’s a high–speed USB 2.0 peripheral controller, which supports bulk, isochronous and
interrupt transfers. It provides six different endpoints that can all be arbitrarily programmed.
One of the main benefits of this controller is its availability as a PCI development board. This
way, it can easily be connected to any standard PCI slot and provide a USB 2.0 peripheral
port. Using this peripheral controller allows us to stick to using standard PC hardware for our
implementation, invalidating the need for a special–purpose hardware design.

5.4.2 Processing Component

The processing component should give the user the freedom to do any desired modifications or
analysis of the raw flow of USB communication. In addition, the processing component could
be used to record the communication of a USB device and replay the communication at a later
point in time. Since these tasks require the greatest amount of user–intervention, the processing
component is implemented completely in user–mode. By adding corresponding API bindings,
the processing component could be implemented as a library and be utilized by third–party tools

CHAPTER 5. IMPLEMENTATION 74

such as fuzzing or exploitation frameworks [46].

One important aspect of the processing component is the mechanism used to reproduce any
discovered crashes, when doing random–based fuzzing. In our previous implementation, we just
recorded the packet number of the packet which was modified by the fuzzer together with the
changed values and their offsets inside the packet. To reproduce a found crash, we just re–
attached the same device and then re–applied the same modifications as done in the previous
attachment. This procedure has the disadvantage that we are blindly relying on the packet
number sent by the device, to decide which packet needs to be modified. If, for any reason, the
number or order of packets differs between two attachments, we are modifying the wrong packet
when trying to reproduce the first attachment.

Another possible approach to reproduce a found crash is to use the replay mechanism to just
replay the whole communication of the device from the respective attachment, which triggered
the crash. However, despite the fact that it has the same problems as the aforementioned
mechanism, should the host send other packets than those in the previous attachment, there is
yet another problem. Replaying the communication of devices with simple protocols, like HID
devices, works perfectly. Mass storage devices on the other hand are one class where replaying
doesn’t work without some modifications. Trying to replay the communication of a mass storage
device works up to the point, where the device starts to exchange SCSI [7] commands with the
host at which point the communication breaks. This problem could eventually be overcome by
analyzing packets sent by the host and applying some slight modifications to the replayed data.

Currently, only the latter approach is implemented in the processing component, but the mech-
anism for reproducing device attachments used in the previous implementation could be easily
integrated into the processing component.

5.4.3 Receiving Component

For the receiving component, we need access to the original communication of a USB device.
There are multiple places inside the Linux kernel where we could grab the raw USB packets.
Packets could be intercepted directly from the host controller driver before they are moved to
any responsible device driver. Although this could be possible with a small modification to the
kernel, we would still need a way for the processing component running in user–mode to access
and modify the flow of communication.

Luckily, the Linux kernel already provides a mechanism to pass all the USB packets down to
user–mode. This mechanism is provided by the USB device file system introduced in Section
3.1.1. To retrieve the descriptors of an attached USB device, the corresponding device files
inside the mounted USB device file system can be read. Communication with a device takes
place using ioctl() calls on the desired device file. For easier access to all the offered features,
the libusb library wraps those operations in an intuitive API, which can be used by the processing
component.

We are using the old but latest stable version 0.1 of the library. Although stable, one of the
shortcomings of this version is the fact that it doesn’t support isochronous transfers. Isochronous
transfers are mostly used by video and audio devices. The missing support in the receiving
component prevents us from testing those devices using our implementation. A completely
redesigned version 1.0 of the library is already in development and currently in beta stadium.
This new version promises to add lots of new features missing in version 0.1, including the support
for isochronous endpoints. When the new version gets more stable, the receiving component of

CHAPTER 5. IMPLEMENTATION 75

our implementation should be re–implemented using libusb 1.0.

5.5 Implementation Details

The final architecture of the implementation is shown in Figure 5.1. The USB fuzzer running in
user–mode is connected to the receiving component through the libusb library, which uses the
USB device file system under the hood. The USB fuzzer communicates with any attached USB
devices through this link.

Device

HCD
Linux-USB

Gadget API

Framework

net2280

Kernel mode

User mode

libusb

/proc/bus/usb

gadgetfs

Host

USB fuzzer

1.

2.

3.

1. Receiving component

2. Processing component

3. Device emulation component

/dev/gadget

Figure 5.1: USB fuzzer architecture

The connection to the device emulation component is implemented by the gadgetfs driver. Pro-
vided as a kernel module, it provides user–mode processes with access to the Gadget API Frame-
work. It provides a new file system, which is usually mounted on the /dev/gadget/ directory. A
single device file for the peripheral controller itself and several endpoint device files are provided.
By reading and writing these files, a user–mode process can communicate with the Gadget API
Framework. The Gadget API Framework uses the peripheral controller driver for the NetChip

CHAPTER 5. IMPLEMENTATION 76

net2280 card, which is then connected to another host. This link is used by the USB fuzzer to
emulate the USB devices.

The USB fuzzer first initializes the libusb library and checks, if any device drivers running on the
same host where already loaded for the attached USB device. If any device drivers are found,
they are detached. This is needed, so that the device can be claimed. After claiming the attached
USB device, we first read all the descriptors from the device using the libusb API.

We extract information about each provided endpoint from the read descriptors. Before actually
writing the descriptors to the control endpoint device file of the gadget peripheral controller,
they must be slightly modified. This is required because the Gadget API Framework expects
the descriptors in another order. In addition, the Gadget API Framework has some limitations
that must be worked around in order to successfully attach some USB devices. See Chapter 8
for some of the limitations of the Gadget API Framework.

Once we have written the descriptors to the control endpoint device file, the Gadget API Frame-
work starts to attach a new device to the connected host. The USB fuzzer now just listens on the
control endpoint, waiting for requests from the host. Despite some control requests that must
be handled separately to make the man–in–the–middle approach possible, any received control
requests are decoded and forwarded to the attached USB device using the libusb API. For IN
transactions, we read the requested number of bytes from the device and forward the response
to the host. For OUT transactions, we read the requested number of bytes from the host and
forward them to the attached USB device.

When receiving a Set_Configuration control request, we set up all the endpoints of the re-
quested configuration by writing the descriptors, we read from the USB device to the gadgetfs
device files. Any data read from the real USB device is forwarded through these endpoints and
any data coming from the host, is forwarded to the device.

If fuzzing is enabled, all the IN data transfers can be fuzzed. We implemented a simple random–
based fuzzer, which randomly changes some bytes, while trying to set the most–significant bit
more often in the hope to trigger signedness issues in the code, which is being fuzz tested.

5.6 Hardware Implementation

Since our implementation is based on the Linux–USB Gadget API Framework, implementing
a malicious USB device in hardware is really straight forward. The Gadget API Framework
offers support for many different device chips, of which most of them are highly integrated SoC
(System–on–Chip) processors. The complete list of supported chips can be found at the project
homepage [27].

We used the NetChip net2280 because it offered a development board as a PCI card, which
simplified our implementation since we could use standard PC hardware for the development.
Another benefit of using the Gadget API Framework is that any implemented driver should be
usable with any of the supported chips with minimal to no changes at all. That means that any
implementation based on the Gadget API Framework, which was developed using the net2280
card, could be easily ported to one of the other supported chips. So any proof–of–concept could
be ported with minimal effort to a small hardware exploit.

Let’s suppose, an exploitable vulnerability was found through the use of our fuzzer. One of the
easiest ways to build a hardware exploit is to utilize one of the mechanisms to reproduce device

CHAPTER 5. IMPLEMENTATION 77

attachments described in Section 5.4.2. The required modifications of the send packets could be
adjusted from a proof–of–concept crashing the host to a working exploit, which would execute
attacker–supplied code on the host.

The first approach mentioned in Section 5.4.2, which just re–attaches the device while applying
the necessary modifications to the respective packets, could be used to implement an exploit in
hardware. Yet it has the disadvantage, that the device to be re–attached is a real device, which
would have to be included in the final hardware solution. Although possible, this has some size
constraints for the build device.

The second approach, where the whole communication of a device attachment is just replayed,
could also be used to implement a hardware exploit. This approach has the benefit that the
original USB device doesn’t have to be present. The only problem with this approach is the
aforementioned restriction to only some device classes.

Whatever replay mechanism is used to build an exploit in hardware, they still both have one
problem in common: a change in the flow of communication from the host might break the
communication. To overcome this problem, it’s of course possible to build a hardware exploit
by writing a new gadget driver, which just tries to trigger the specific vulnerability. Although
this is more time consuming than relying on the replay mechanism, this course of action allows
a developed hardware exploit to be made much more reliable and built in nearly any form.

A hardware implementation is even easier for the mass storage device based attacks mentioned
in Section 4.2.2. Any device providing the USB mass storage functionality can obviously be used
for those attacks.

Chapter 6

Results

Our first approach to building a USB fuzzer was the integration of the actual data mutation
process inside a peripheral controller driver of the Linux–USB Gadget API Framework. This
way, we could fuzz all device drivers for which a corresponding gadget driver existed. Most of the
results of this thesis paper were found using this implementation, but since the implementation
restricted us to only a few device classes, we started to implement the new architecture described
in Chapter 5. It provides a good deal more flexibility. Since the new implementation was
still in its final stage of development, the new implementation was not used to reproduce all
of the findings, but it can be expected that the implementation from Chapter 5 will be able
to reproduce the results from the previous implementation. Nothing changed between both
implementations in the way we are doing the actual data mutation. Both implementations use
exactly the same random–based fuzzer to fuzz IN transactions. There are only two relevant
changes in the new implementation. Instead of fuzzing IN transactions of a virtual gadget device
emulated in software, we are now fuzzing IN transactions of real USB devices connected to our
system. The second change concerns the place where we are fuzzing. Compared to our previous
implementation, the new design allows us to do the fuzzing in user–mode instead of in the kernel.
To get the data back into the kernel, we need the gadgetfs kernel module. Although this means
one additional layer, which the mutated data must traverse, it should not influence the fuzzed
communication in any way. So, the new implementation should be able to produce the same
results, but in addition, also increase the number of USB device drivers that can be tested.

In the following, we will describe our findings using the previous implementation. We used the
file–backed storage gadget driver to test the mass storage device class drivers of all operating
systems listed in Chapter 3. We built a 1 GB file system image file with a NTFS partition and
stored some files on it. This image file was used as the file system for the emulated mass storage
device. We repeatedly let the emulated device attach at the host, waited for at least 5 seconds
to let the device be enumerated and then detached the device again. For each attachment,
some IN transactions on all USB pipes from the device to the host were fuzzed by randomly
replacing some bytes with random ones while the most–significant bit was set more often in the
hope to trigger some signedness issues. The packet number, together with the offsets and values
modified by the fuzzer, were stored such that discovered crashes could be reproduced. Once a
crash was found, the same gadget driver was just loaded again, but instead of blindly fuzzing all
IN transactions, the recorded modifications were simply re–applied.

While testing Windows XP SP2, multiple crashes where encountered. Some of them couldn’t be

78

CHAPTER 6. RESULTS 79

reproduced using our approach described in Section 5.4.2. This was either because the host sent
packets other than those in the enumeration before or because of the nature of the crash. Some
crashes where most likely some kind of race conditions, which obviously couldn’t be reproduced
easily. For fuzzing Windows XP, we had to adjust the fuzzer a little bit. It turned out, that
fuzzing on endpoint 0 disabled the USB functionality for the whole USB controller. After a few
runs of attaching and detaching emulated USB devices, the attachment of new devices were no
longer detected. The USB functionality was restored only after a reboot of the host. For this
reason, we excluded the Default Control Pipe from being fuzzed.

We actually found two reproducible crashes. The first one was found inside the USB mass
storage class driver usbstor.sys that was introduced in Section 4.2.3. We found out that it was
possible to trigger a bug check inside the kernel leading to a kernel crash, by sending malformed
data to the host. Analysis of the crash revealed that it happened due to a double–free of
kernel pool memory. Although exploiting a double–free vulnerability in kernel–mode is harder
as the equivalent in user–mode (see Section 2.2.2), exploitation could still be possible [47]. This
vulnerability shows that attacking USB device drivers is not only a theoretical concept, but is
also feasible in practice.

The second crash was found inside the disk subsystem, more precisely inside the disk.sys
class driver introduced in Section 4.2.3. A bug check was triggered when the host tried to
read the partition table of the attached USB mass storage device using the disk.sys function
DiskReadPartitionTableEx. The crash probably happened due to some kind of kernel memory
pool corruption. A more thorough analysis of the vulnerability would be needed to decide if
it could be exploited for code execution. Independent of the exploitability of this particular
vulnerability, this case shows that other kernel components not obviously related to the USB
protocol can also provide an attack surface. The USB port is just used as an entry point to reach
other components inside the kernel.

Fuzzing Mac OS X 10.5 led to varying behaviour. When the time between attachment and
detachment of the USB device was chosen too small, repeatedly re–attaching the device, led
to a complete lockup of the system. Although no kernel panic screen was shown, only a reset
of the system restored the behaviour. One other kernel panic was produced by our fuzzer.
Unfortunately we were not able to reproduce it using our approach.

Fuzzing the Linux kernel 2.6.24 and Windows Vista did not lead to any crashes. This might
indicate slightly better code quality but is of course no guarantee for anything. More thorough
testing must be performed in the future to get a better picture. Additionally, other class drivers
than the mass storage class driver should be tested. We are expecting to find more bugs, especially
when using the new implementation to fuzz some third–party vendor drivers, which the old
implementation didn’t allow us to do.

Besides the fuzz–testing, we also implemented one of the logic attacks from Section 4.2.1 using
our implementation. We implemented a malicious HID device, by first recording the flow of
communication of a default USB keyboard connected to a Windows XP system. We manually
opened the Windows run dialog and typed a command. The stored communication was then
just replayed at another system, effectively executing the desired command.

Chapter 7

Conclusion

This thesis paper has presented different security aspects of the Universal Serial Bus architecture
and the software that implements it. We first gave an overview of the USB support in some of
the major operating systems and described in detail the process of device enumeration and how
new device drivers are loaded. Each of the mentioned operating system was accompanied by a
list of USB class drivers that come pre–installed with the respective operating system and thus,
provide a potential attack vector for default installations.

After the reader was familiarized with the operating system specific details, the awareness for
attacks against the Universal Serial Bus was raised by some real world scenarios. Each scenario
demonstrated a way which might be used to attack a system using a provided USB bus. We
developed a classification to categorize all the possible attacks. Consequently, we described
different attacks for each mentioned category and even implemented some of them.

To actually prove the feasibility of some of our mentioned theoretical attacks against the USB
device drivers and stacks, we developed a USB fuzzer. Our implementation is based on three
different components which allow for easy replacement of each component and make the imple-
mentation universally usable even for other tasks than fuzzing. We demonstrated the universal
usability by implementing one of the previously mentioned logic attacks using our implementa-
tion.

Finally, we presented the results of fuzz–testing the USB mass storage class driver provided by all
previously mentioned operating systems. Amongst several crashes we found a vulnerability inside
a USB class driver provided with every version of Windows XP. An additional crash was found
inside the disk subsystem of Windows XP, supporting our claim that other kernel subsystems
might prove to be fruitful targets as well.

All those results support our conclusion that the Universal Serial Bus provides a real attack
vector that should be taken into account when assessing the physical security of a system.

80

Chapter 8

Future Work

Although our implementation provoked lots of different crashes in the different operating systems
tested, a high number of them where not reproducible. This can be attributed to the way we are
trying to reproduce a previous device attachment as described in Section 5.4.2. Both approaches
described could be improved by taking more information about the underlying protocol into
account and applying some slight modifications to the send packets. This way, the mechanism
to reproduce discovered crashes could be made more resilient against changes in the flow of
communication. Since the mechanism to reproduce device attachments can also be used to
implement an exploit in hardware, this would improve the reliability of build exploits as well.

Another shortcoming of our implementation is related to the third–party software in use. The
first thing concerns the libusb version used to implement the receiving component. As described
in Section 5.4.3, it doesn’t support isochronous transfers and thus, prevents us from testing video
and audio devices. When libusb 1.0 becomes more stable, the receiving component should be
re–implemented based on libusb 1.0.

Some remaining problems with our implementation are related to the Gadget API Framework
used for the device emulation component. The used file system gadget driver gadgetfs is still
marked EXPERIMENTAL in the Linux kernel. This has led to multiple dead–locks of the
emulating machine during the development of the fuzzer. Some other minor problems with the
gadget framework are rooted in the fact that it modifies certain fields of the descriptors written
to it. Since we are just forwarding the descriptors received from a USB device, this behaviour
is not desired. For example, the gadgetfs module always sets the release number field (bcdUSB)
inside the device descriptor to Version 2.0. This is even done for devices that only adhere to
Version 1.0 of the specification. In addition to resetting the release number field, which doesn’t
lead to problems in every case, the gadget framework always sets the wMaxPacketSize0 field of
the device descriptor to the value 64, even if a device reported another value for this field. Trying
to forward the communication in such a case has led to various problems.

Due to these problems, we might need to consider in the future whether it makes sense to
re–implement the device emulation component using another technology. We don’t need any
intelligence inside the device emulation component. We only need a way to send and receive raw
USB packets. One idea is to alienate a usual USB host controller as a raw packet sending/receiv-
ing device. If that would be possible, the implementation could abandon the gadget framework
and there would be no need for a hardware peripheral controller anymore. Future research in

81

CHAPTER 8. FUTURE WORK 82

this direction will show if this is possible.

Besides the problems mentioned that are related to the implementation, more research into the
field of USB security is generally required. USB security is a really broad field. Not every aspect
could be covered in detail in the limited time frame provided for this thesis. We tried to give a
good overview of security aspects related to the Universal Serial Bus. The following are areas
where we think that further research should be conducted in the future.

One area of interest is certainly the Certified Wireless USB (CWUSB) extension [1]. One of
the design goals of the wireless USB specification is to keep the current software infrastructure
including all the USB device drivers intact. Wireless USB basically only provides the wireless
transport mechanism for the USB protocol to remove the need for any cables. To guarantee
comparable security, as is the case with wired USB, it implements mutual authentication and
encryption between the host and wireless USB devices. What makes wireless USB so interesting
is the fact that attacks can now potentially be performed over the air without the need for
physical access. The mechanisms used for authentication and encryption should be analyzed for
their effectiveness.

Another area which will be in need of more research in the future is the USB packet sniffing
attack described in Section 4.2.1. We only described the theoretical possibility of this attack. A
proof–of–concept could be created to demonstrate the feasibility of this attack. The next logical
step after being able to sniff the communication destined for other devices is the impersonation of
these. We need to investigate whether it’s possible for a USB device to actively spoof responses
of other connected devices. This would allow a malicious USB device to silently replace the data
transferred from other connected USB devices to the host. For example, while the malicious USB
device is attached, files copied or executed from an attached USB flash drive could be replaced
when accessed from the host.

Bibliography

[1] Agere, Hewlett-Packard, Intel, Microsoft, NEC, Philips, and Samsung. Wireless Uni-
versal Serial Bus Specification 1.0, May 2005. http://www.usb.org/developers/wusb/
[2008/11/04].

[2] Hewlett-Packard, Intel, Microsoft, NEC, ST-NXP Wireless, and Texas Instruments. Univer-
sal Serial Bus Specification 3.0, November 2008. http://www.usb.org/developers/docs/
[2008/11/17].

[3] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips. Universal Serial
Bus Specification 2.0, April 2000. http://www.usb.org/developers/docs/ [2008/07/26].

[4] Unicode Standard, Version 5.0. Addison-Wesley Professional, 2006.

[5] Jan Axelson. USB Complete: Everything You Need to Develop Custom USB Peripherals.
Lakeview Research, 2001.

[6] USB Implementers Forum, Inc. Approved Class Specification Documents. http://www.
usb.org/developers/devclass_docs#approved [2008/12/09].

[7] Technical Committee T10. SCSI Primary Commands - 2 (SPC-2) 5.0, September 1998.

[8] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, April 2008. http:
//www.intel.com/products/processor/manuals/ [2008/07/16].

[9] Aleph One. Smashing The Stack For Fun And Profit. 1996. http://www.phrack.org/
issues.html?id=14&issue=49 [2008/06/28].

[10] anonymous. Once upon a free()... 2001. http://www.phrack.org/issues.html?issue=
57&id=9#article [2008/08/03].

[11] Doug Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html
[2008/07/29].

[12] Poul-Henning Kamp. Malloc(3) revisited. In ATEC ’98: Proceedings of the annual con-
ference on USENIX Annual Technical Conference, pages 36–36, Berkeley, CA, USA, 1998.
USENIX Association.

[13] Michel ”MaXX” Kaempf. Vudo malloc tricks. 2001. http://www.phrack.org/issues.
html?issue=57&id=8#article [2008/08/02].

[14] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur. Run-time detection of heap-based
overflows. In Proceedings of the 17th USENIX Large Installation Systems Administration
Conference (LISA). USENIX Association, 2003.

83

http://www.usb.org/developers/wusb/
http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/
http://www.usb.org/developers/devclass_docs#approved
http://www.usb.org/developers/devclass_docs#approved
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/
http://www.phrack.org/issues.html?id=14&issue=49
http://www.phrack.org/issues.html?id=14&issue=49
http://www.phrack.org/issues.html?issue=57&id=9#article
http://www.phrack.org/issues.html?issue=57&id=9#article
http://gee.cs.oswego.edu/dl/html/malloc.html
http://www.phrack.org/issues.html?issue=57&id=8#article
http://www.phrack.org/issues.html?issue=57&id=8#article

BIBLIOGRAPHY 84

[15] Bruce Perens. Electric fence. http://directory.fsf.org/project/ElectricFence/
[2008/07/27].

[16] Yves Younan, Wouter Joosen, and Frank Piessens. Efficient protection against heap-based
buffer overflows without resorting to magic. In Proceedings of the International Confer-
ence on Information and Communication Security (ICICS 2006), Raleigh, North Carolina,
U.S.A., December 2006.

[17] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Security Assessment:
Identifying and Preventing Software Vulnerabilities. Addison-Wesley Professional, 2006.

[18] Scut / team teso. Exploiting format string vulnerabilities. September 2001. http://
packetstormsecurity.org/papers/unix/formatstring-1.2.tar.gz [2008/07/03].

[19] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley, 2007.

[20] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of
UNIX utilities. Commun. ACM, 33(12):32–44, 1990.

[21] Oulu University Secure Programming Group. PROTOS - Security Testing of Protocol
Implementations. http://www.ee.oulu.fi/research/ouspg/protos/ [2008/08/01].

[22] Dave Aitel. The Advantages of Block-Based Protocol Analysis for Security Testing. 2002.

[23] Linux USB Project. http://www.linux-usb.org/ [2008/08/23].

[24] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers, 3rd
Edition. O’Reilly Media, Inc., 2005.

[25] Libusb Project. http://libusb.sourceforge.net/ [2008/08/28].

[26] jUSB Project. http://jusb.sourceforge.net/ [2008/08/28].

[27] Linux-USB Gadget API Framework. http://www.linux-usb.org/gadget/ [2008/08/24].

[28] Greg Kroah-Hartman. udev - a userspace implementation of devfs. In Proceedings of the
Linux Symposium, pages 249–257, 2003.

[29] Hardware Abstraction Layer (HAL) Specification. http://www.freedesktop.org/wiki/
Software/hal [2008/08/29].

[30] Linux USB Device Driver Support. http://www.linux-usb.org/devices.html
[2008/08/28].

[31] Apple Inc. I/O Kit Fundamentals - Hardware & Drivers, May 2007. http://developer.
apple.com/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/
[2008/09/12].

[32] Apple Open Source Darwin Releases. http://www.opensource.apple.com/darwinsource/
[2008/09/16].

[33] Mark E. Russinovich and David A. Solomon. Microsoft Windows Internals, Fourth Edition:
Microsoft Windows Server(TM) 2003, Windows XP, and Windows 2000 (Pro-Developer).
Microsoft Press, Redmond, WA, USA, 2004.

http://directory.fsf.org/project/ElectricFence/
http://packetstormsecurity.org/papers/unix/formatstring-1.2.tar.gz
http://packetstormsecurity.org/papers/unix/formatstring-1.2.tar.gz
http://www.ee.oulu.fi/research/ouspg/protos/
http://www.linux-usb.org/
http://libusb.sourceforge.net/
http://jusb.sourceforge.net/
http://www.linux-usb.org/gadget/
http://www.freedesktop.org/wiki/Software/hal
http://www.freedesktop.org/wiki/Software/hal
http://www.linux-usb.org/devices.html
http://developer.apple.com/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/
http://developer.apple.com/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/
http://www.opensource.apple.com/darwinsource/

BIBLIOGRAPHY 85

[34] Microsoft Developer Network: Windows Driver Kit. http://msdn.microsoft.com/en-us/
library/aa972908.aspx [2008/08/13].

[35] Microsoft Windows Hardware Developer Central USB FAQ. http://www.microsoft.com/
whdc/connect/usb/usbfaq_intro.mspx [2008/08/13].

[36] Penny Orwick. Developing Drivers with the Windows Driver Foundation. Microsoft Press,
Redmond, 2007.

[37] Microsoft Component Object Model Technologies. http://www.microsoft.com/com/
default.mspx [2008/09/24].

[38] Microsoft Developer Network: Using and Configuring AutoPlay. http://msdn.microsoft.
com/en-us/library/bb776829(VS.85).aspx [2008/09/18].

[39] Microsoft Developer Network: Autorun.inf Entries. http://msdn.microsoft.com/en-us/
library/bb776823.aspx [2008/09/17].

[40] Microsoft USB Storage - FAQ for Driver and Hardware Developers. http://www.
microsoft.com/whdc/archive/usbfaq.mspx [2008/09/18].

[41] U3 Standard. http://www.u3.com [2008/09/30].

[42] Wesley McGrew. Hacking U3 Smart USB Drives. http://www.mcgrewsecurity.com/
research/hackingU3/ [2008/09/30].

[43] Apple Inc. Quick Look Programming Guide. February 2008. http://developer.apple.
com/documentation/UserExperience/Conceptual/Quicklook_Programming_Guide/
Quicklook_Programming_Guide.pdf [2008/10/07].

[44] Apple Inc. Spotlight Overview. May 2007. http://developer.apple.com/documentation/
Carbon/Conceptual/MetadataIntro/MetadataIntro.pdf [2008/10/07].

[45] Microsoft Windows Device Simulation Framework. http://www.microsoft.com/whdc/
devtools/DSF.mspx [2008/11/08].

[46] The Metasploit Project. http://www.metasploit.com/ [2008/11/12].

[47] Kostya Kortchinsky. Exploiting Kernel Pool Overflows. June 2008. http://www.
immunityinc.com/downloads/KernelPool.odp [2008/09/30].

http://msdn.microsoft.com/en-us/library/aa972908.aspx
http://msdn.microsoft.com/en-us/library/aa972908.aspx
http://www.microsoft.com/whdc/connect/usb/usbfaq_intro.mspx
http://www.microsoft.com/whdc/connect/usb/usbfaq_intro.mspx
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://msdn.microsoft.com/en-us/library/bb776829(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb776829(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb776823.aspx
http://msdn.microsoft.com/en-us/library/bb776823.aspx
http://www.microsoft.com/whdc/archive/usbfaq.mspx
http://www.microsoft.com/whdc/archive/usbfaq.mspx
http://www.u3.com
http://www.mcgrewsecurity.com/research/hackingU3/
http://www.mcgrewsecurity.com/research/hackingU3/
http://developer.apple.com/documentation/UserExperience/Conceptual/Quicklook_Programming_Guide/Quicklook_Programming_Guide.pdf
http://developer.apple.com/documentation/UserExperience/Conceptual/Quicklook_Programming_Guide/Quicklook_Programming_Guide.pdf
http://developer.apple.com/documentation/UserExperience/Conceptual/Quicklook_Programming_Guide/Quicklook_Programming_Guide.pdf
http://developer.apple.com/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.pdf
http://developer.apple.com/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.pdf
http://www.microsoft.com/whdc/devtools/DSF.mspx
http://www.microsoft.com/whdc/devtools/DSF.mspx
http://www.metasploit.com/
http://www.immunityinc.com/downloads/KernelPool.odp
http://www.immunityinc.com/downloads/KernelPool.odp

List of Tables

2.1 USB packet classes . 11

2.2 USB class specifications . 18

2.3 Some printf(3) format specifiers . 29

3.1 List environment variables passed to the kernel hotplug helper program 39

3.2 USB class drivers included in Linux kernel 2.6.24 40

3.3 USB class drivers included in Mac OS X 10.5 . 46

3.4 Device driver match priorities . 52

3.5 USB class drivers included in Windows XP . 53

4.1 NoDriveTypeAutoRun bits . 62

86

List of Figures

2.1 Universal Serial Bus topology . 9

2.2 Logical connection between a USB device and a host 10

2.3 Interleaved descriptors provided by the sample USB device from Figure 2.2 . . . 14

2.4 Process memory layout . 19

2.5 Stack layout just before the strcpy(3) . 21

2.6 Stack layout after a strcpy(3) overflow . 22

2.7 Two adjacent heap chunks . 24

2.8 Removing a chunk from the doubly–linked list . 25

3.1 Linux USB core subsystem . 34

3.2 URB transfer passing through the USB core subsystem 35

3.3 USB device driver structure . 36

3.4 Linux–based USB device connected to a USB host 37

3.5 Driver objects connected through nub objects . 42

3.6 Application controlling a USB device from user–mode 43

3.7 Microsoft Windows I/O system . 47

3.8 Path of a user–mode I/O request through the I/O system 48

3.9 Driver object and its exposed driver interface . 49

3.10 UMDF architecture . 55

4.1 Relation between components of the USB architecture 59

4.2 Quick Look architecture . 65

4.3 Windows hard–disk storage drivers . 67

5.1 USB fuzzer architecture . 75

87

Listings

2.1 Simple strcpy(3) overflow . 20

2.2 Structure of the boundary tag . 23

2.3 dlmalloc unlink() macro . 24

2.4 Example of an exploitable integer overflow . 28

2.5 Simple format string vulnerability . 30

3.1 Example of a XML matching dictionary containing two personalities 45

4.1 Simple example of a Windows AutoRun file . 61

88

Declaration

I hereby declare that I created this thesis myself, without any outside help and without using
other means of research than those listed in the attached bibliography. All quotes — both literal
and according to their meaning — from other publications have been marked accordingly.

I agree to the public display of this thesis in the department’s library.

Hamburg, May 7, 2009,

(Moritz Jodeit)

89

	Introduction
	Overview
	Organization

	Technical Background
	Universal Serial Bus
	Architecture
	Communication Flow
	Bus Protocol
	Transfer Types
	Descriptors
	Bus Enumeration
	Device Classes

	Software Vulnerabilities
	Buffer Overflows
	Double Frees
	Integer--related Bugs
	Format String Vulnerabilities

	Fuzz--Testing
	History
	Block--Based Fuzzing
	Input Data Creation

	USB Support in Selected Operating Systems
	Linux
	Driver Architecture
	Enumeration
	Supported Class Drivers

	Mac OS X
	Driver Architecture
	Enumeration
	Supported Class Drivers

	Windows XP
	Driver Architecture
	Enumeration
	Supported Class Drivers

	Windows Vista
	Driver Architecture
	Enumeration
	Supported Class Drivers

	Attack Vectors
	Attack Scenarios
	Classification of Attack Methods
	Logic Attacks
	Application--Level Attacks
	USB Stack and Device Driver Attacks
	Kernel Subsystem Attacks

	Implementation
	Layers to be Fuzzed
	Implementation Prerequisites
	Design of the Fuzzer
	Implementation of each Component
	Device Emulation Component
	Processing Component
	Receiving Component

	Implementation Details
	Hardware Implementation

	Results
	Conclusion
	Future Work

