
Hacking Video Conferencing Systems

Moritz Jodeit (n.runs AG)
moritz.jodeit@nruns.com

Abstract

High-end videoconferencing systems are widely deployed
at critical locations such as corporate meeting rooms
or boardrooms. Many of these systems are reachable
from the Internet or via the telephone network while in
many cases the security considerations are limited to
the secure deployment and configuration.

We conducted a case study on Polycom HDX devices
in order to assess the current state of security on those
devices. After analyzing the software update file format
and showing how to get system level access to the oth-
erwise closed devices we describe how to setup a proper
vulnerability development environment which lays the
groundwork for future security research.

We demonstrate the feasibility of remotely compro-
mising Polycom HDX devices over the network by im-
plementing an exploit for one of the vulnerabilities we
identified in the H.323 stack of the current software ver-
sion which allows us to compromise even firewalled de-
vices as long as the H.323 port is reachable. Our attack
does not require the auto-answer feature for incoming
calls to be turned on.

We conclude with some thoughts about post-
exploitation and describe possible ways to control at-
tached peripherals such as the video camera and mi-
crophone which could be used to build a surveillance
rootkit.

1 Introduction

Nowadays videoconferencing systems are widely de-
ployed in the business, government, medicine and edu-
cation sectors. Companies are using those systems to
connect executive level meeting rooms which are ge-
ographically spread around the globe. Governments
make heavy use of video conferencing for conducting
meetings between political leaders [8]. But it is also
used for initial court appearance or to carry out hear-
ings at remote locations [12]. The military is using
videoconference systems for information exchange in
remote tactical locations but also for soldiers to com-
municate with their families. Finally videoconferencing
systems are also used for training purposes in the edu-
cation sector as well as for telemedicine applications in
the healthcare industry.

In many of the mentioned scenarios classified infor-
mation is transmitted over those systems. Even if the
videoconference system is only used for non-classified
information, devices might be installed at important
locations such as boardrooms where the most critical
meetings take place. With the equipped HD camera
and highly sensitive omnidirectional microphones mod-
ern systems provide, those devices could easily be used
to listen in on conversations or read sensitive informa-
tion lying on a conference room table, opening the door
for industrial espionage. Additionally videoconferenc-
ing systems are often accessible over public networks
such as the Internet or the telephone network. Exploit-
ing those devices would not only allow an attacker to
eavesdrop on communication, but could also provide a
first foothold for intrusions into the internal company
network.

In this paper we present the results of our security
analysis of a Polycom HDX system and demonstrate
the feasibility of remotely compromising those devices.

In the following sections we describe in detail the
format of the firmware update files and show how to
unpack them in order to conduct a proper security anal-
ysis of the software.

Based on these results we show different ways to get
system level access to the otherwise closed devices and
propose a possible solution for rooting the device in the
future even after all the described vulnerabilities have
been fixed by the vendor.

We describe the architecture of the system and the
main system processes which should be audited for po-
tential security vulnerabilities. We show how to setup
remote debugging to allow a proper vulnerability de-
velopment environment to be created.

Based on one of the vulnerabilities we identified in
the H.323 stack in the latest software version we de-
scribe a way to remotely exploit a Polycom HDX sys-
tem in a firewalled environment where all management
interfaces are disabled or firewalled off.

We conclude our analysis with a discussion about
payload development which can be used in a post-
exploitation scenario to control connected peripherals
such as the video camera or the microphone which could
be used to implement a surveillance rootkit.

In the next section we give some background infor-
mation about videoconferencing in general.

2 Background

Videoconferencing systems allow two or more parties
to visually communicate and collaborate. Video, au-
dio and optionally data are transmitted over a digi-
tal packet-based network such as IP or ISDN, allowing
face-to-face communication even if the meeting mem-
bers are located on different continents.

There are basically two different kinds of videocon-
ferencing systems: Dedicated systems and Desktop sys-
tems. Dedicated systems are appliances which come
with all the necessary equipment. They typically come
with a pan-tilt-zoom (PTZ) video camera which can
be remotely controlled. Additionally several omnidi-
rectional microphones are provided. The console is an
embedded system which connects all the components
together and provides the control interface and the soft-
ware or hardware codecs. Dedicated systems are typi-
cally connected to a television set or projector.

Dedicated systems come in different sizes. They
range from large, non-portable systems (e.g. dedicated
for fixed installations at large conference rooms) down
to small portable devices which provide the video cam-
era, microphone and speakers all in the console for mo-
bility.

Desktop systems on the other hand use an existing
workstation and make use of the connected web cam,
microphone and speakers which makes them less expen-
sive. Desktop systems either come as hardware exten-
sions or as software add-ons.

3 Polycom HDX Devices

Polycom is the leading vendor for unified communica-
tions (UC) systems. They offer different dedicated sys-
tems for telepresence, video, and voice. The most popu-
lar videoconferencing units can cost up to $25,000. Due
to the high price these devices are mostly used by larger
companies and organizations. According to Polycom
their devices are used by leading government agencies
and ministries worldwide as well as by the world’s 10
largest banks, and the 6 largest insurance companies
worldwide [9].

We are targeting the HDX series of devices which is
a popular videoconferencing solution sold by Polycom.
All tests described in this paper were conducted on a
HDX 7000 HD device.

The HDX 7000 HD device is an embedded system
with a PowerPC e300c1 CPU running Linux. It comes
with 256 MB RAM, a 512 MB CompactFlash disk to
store the operating system and onboard flash memory
to store the boot loader. Our HDX device was equipped
with the external Polycom EagleEye HD camera which
is a PTZ video camera but also serves as the infrared
(IR) receiver for the HDX IR remote control. The sys-

tem also came with the Polycom HDX Mica Micro-
phone Array which is a table microphone for 360-degree
audio pickup.

3.1 Attack Surface

This section lists some of the network-based interfaces
of the system. It is meant to give the reader an idea
of the possible attack surface. However it’s not meant
to be exhaustive. For a complete list of interfaces and
supported protocols see the administrator’s guide at
[10].

HDX systems offer several different administrative
interfaces to remotely access the system. The main
administrative interface is the Polycom HDX Web In-
terface. The web interface is the recommended way to
configure all aspects of the HDX system. It also offers
diagnostics and remote control functionality.

Instead of manually configuring the system through
the web interface it is also possible to use a provisioning
service. With the help of the Polycom Converged Man-
agement Application (CMA) or the RealPresence Re-
source Manager system it is possible to centrally man-
age HDX devices. This way it is possible to deploy
configuration settings and software updates remotely.

Another administrative interface provided by the
HDX system is the Application Programming Interface
(API). The API is a set of commands to automate a
Polycom HDX system. This interface is meant to be
used by advanced users or system integrators. The API
can be accessed over the RS-232 serial console or over
the network via telnet on port 24. For a complete list of
possible commands see the integrator’s reference man-
ual at [11].

HDX devices provide another console-based adminis-
trative interface, which is called the Polycom Command
Shell. It can be accessed via telnet on port 23 and can
be used to remotely control the device. It offers com-
mands to view and change various device settings and
can also be used to control the device and attached com-
ponents such as the video camera. A list of supported
commands can be printed with the help command.

Finally HDX devices support SNMP for monitoring
the system for certain events such as failed and suc-
cessful admin logins, connects and disconnects of phone
or video calls, and various other events. Even though
HDX devices only allow read-only access via SNMP.
Write operations are not supported.

In addition to the administrative interface HDX de-
vices implement the usual videoconferencing protocols
such as H.323 and SIP.

3.2 Firmware Analysis

Software updates for all Polycom devices can
be found at the Polycom Support page at

2

http://support.polycom.com. This page provides
software updates as well as documentation on the full
range of products. The updates for the Polycom HDX
series of devices come as ZIP files which contain a
single PUP file which is the actual firmware update file.
The current version as of this writing is 3.0.5-22695.
All the following analysis described in this paper is
based on this version.

Software updates can either be installed manually
via the web interface or can be installed automatically
when a provisioning service is used. In the latter case
the system will check for new updates every time it
restarts and at an interval set by the system.

In order to analyze the Polycom update (PUP) file
format, we first scanned the file for known signatures
using Binwalk [3]. It turns out that the first 768 bytes
of the file represent the PUP header. The header is
followed by a gzip compressed tar archive and an ad-
ditional uncompressed tar archive. The two archives
are separated by the string constant “--multipart
boundary 1--”. The first tar archive contains the
bootstrap code which is used to install the update.
The main functionality can be found in the embedded
setup.sh shell script. The second tar archive contains
the actual update. All files embedded in this archive
are extracted and copied to the HDX system, poten-
tially overwriting older files. A simple representation
of the PUP file structure is shown in Figure 1.

PUP Header (768 Bytes)

Bootstrap (tar.gz)

"--multipart boundary 1--"

Update Package (tar)

Figure 1: PUP file format

Instead of manually trying to figure out the format of
the PUP header, we are going a different route. Look-
ing through the embedded update archive, we found
the binary polycom.g3/polycom/bin/puputils.ppc.
This is the PUP Utility which is used on the HDX sys-
tem to verify and install new firmware updates. Addi-
tionally it also provides the functionality to create new
PUP files.

By reverse engineering this binary we were able to
figure out the exact PUP header format without any
guess work. The complete format is shown in Table 1.

The PUP header consists of several fixed-size fields

length (bytes) description
5 PUP File ID
4 Header Version
20 Header MAC Signature
32 Processor Type
32 Project Code Name
16 Software Version
16 Type of Software
32 Hardware Model
16 Build Number
32 Build Date
16 Build By
16 File Size (without header)
5 Compression Algorithm
445 Supported Hardware
81 Signature (ASN.1 encoded)

Table 1: PUP header file format

which are padded with null bytes. Every PUP file starts
with the fixed PUP file ID “PPUP” or “PPDP” fol-
lowed by a single null byte. The file ID is followed by
the header version after which comes a 20 byte crypto-
graphic MAC value which will be described shortly.

Most of the following fields are pretty self-
explanatory and describe either properties of the
firmware update (such as version or build date) or re-
quirements of the target hardware. The last field of the
header contains a public key signature which is stored
in ASN.1 encoded form.

The first protection against file tampering is the em-
bedded Header MAC Signature which purpose seems
to be to protect the PUP header from being modified.
When the firmware update is installed the message au-
thentication code (MAC) of the PUP header will be
calculated (setting the Header MAC Signature field to
zero). The result will be compared against the MAC
stored in the PUP header. If they don’t match, the
firmware update process will be aborted.

The obvious problem with using a MAC for integrity
checks is that the secret key used to calculate and ver-
ify the MAC must be stored on the device. In this case
it is stored inside the puputils.ppc binary itself. The
secret key consists of the string “weAREtheCHAMPIONS”
prefixed and followed by five constant seemingly ran-
dom bytes respectively.

We didn’t spend any further time reverse engineer-
ing the used MAC algorithm. Modifications to the PUP
header can easily be done by first running the extracted
puputils.ppc inside a virtual machine on the modified
PUP file. We used a Debian Squeeze image running in-
side Qemu to emulate the PowerPC environment which
allowed us to execute the binary without a problem.
It’s not even necessary to use a debugger to extract the
correct MAC value calculated by the tool, because the

3

PUP Utility will happily print the expected and valid
MAC for the given file in the error message as can be
seen in Listing 1.

We just have to replace the MAC inside the PUP
header with the printed value to get a PUP file with a
valid MAC signature.

In addition to the PUP header MAC a public key
DSA signature is used to verify the integrity of the
whole file (including the PUP header). The signa-
ture is stored at the end of the PUP header. When
puputils.ppc is executed to verify a PUP file it first
reads the DSA public key file su public.key from the
current working directory and then uses it to verify the
signature stored in the PUP file. If either the PUP
header or the body of the file were modified the signa-
ture verification fails. So it is not enough to just break
the PUP header MAC to install modified software up-
dates.

We didn’t spent any further time analyzing the signa-
ture verification process in detail. However for rooting
the device there are easier methods to accomplish this
goal which are described in the next section.

3.3 Rooting the Device

Polycom HDX systems are closed systems, i.e. the cus-
tomer is not supposed to get direct access to the under-
lying system. Although we can do bug hunting without
any system level access, it is much more comfortable to
have control over the device. Especially when it comes
to fuzzing, monitoring running processes for faults and
controlling the device (e.g. restarting processes) is im-
portant. Having root access also simplifies the exploit
development process a lot. In this section we are tak-
ing a look at several different approaches on how to get
root access to the device.

3.3.1 Polycom Command Shell

There are several possibilities to get root access to the
system. The easiest way however is through the Poly-
com Command Shell. This shell can be accessed either
via a RS-232 serial connection or via telnet on port 23.
By analyzing the extracted firmware update we found
out that the Polycom HDX system can be booted in
two different modes. By default it is running in Pro-
duction mode. However the system can also be started
in Development mode. The development mode turns
the flash-based system to use an NFS-mounted devel-
oper workspace. Additionally it enables telnet access
on port 23 where you can login with the user root

without a password. This mode is used by Polycom in-
ternally for software development. However it can still
be enabled in the released firmware.

To enable the development mode, we make use of
the printenv and setenv commands in the Polycom

Command Shell. The printenv command allows us to
display all the configuration variables which are stored
in flash memory. With the setenv command we can
modify those. The startup script /etc/init.d/rcS

checks for the U-Boot environment variable devboot

and boots into development mode if it is set. In order
to set this variable, we can add the othbootargs vari-
able with the value “devboot=bogus” in flash memory.
The value of this variable will be appended as an ad-
ditional kernel parameter and consequently enable the
development mode on the next reboot. After the sys-
tem booted in development mode, you can access it by
connecting via telnet and login as the user root with-
out a password. Listing 2 shows how to enable the
development mode via a serial connection.

In development mode not all services are running.
End-user services like the web interface are not started
which makes this mode unsuitable for a bug hunting
environment. However we can switch back to the pro-
duction mode after adding a permanent way for us
to access the device. We just enable a telnet server
in the /etc/inetd.conf.production file on an un-
used port. This is the inetd configuration file used
in production mode. To leave the production mode,
you can either manually remove the othbootargs vari-
able again using the fw setenv command or call the
/opt/polycom/bin/devconvert shell script with the
command line argument “normal”. This will reboot
the system to re-enable the production mode.

3.3.2 Exploiting Command Injection

Another possibility to get system level access to the
device is to exploit a vulnerability in one of the many
interfaces provided by the HDX system. It is pretty
straightforward to find command injection vulnerabil-
ities in the current software version 3.0.5. We used a
command injection vulnerability in the firmware up-
date functionality itself which can be accessed through
the web interface.

When uploading a PUP file via the web interface the
file is first stored on the device and then the filename is
passed as an argument to a call to the puputils.ppc

binary in order to verify its integrity. Missing input val-
idation allows us to inject additional shell commands
by using shell metacharacters (such as a semicolon).
We just renamed a valid PUP file to mount this at-
tack. One limitation is that we can’t use slash char-
acters directly because the injected command is part
of a path and only the filename (the part after the last
slash character) is used in the call to the puputils.ppc
binary. Another minor limitation is the fact that up-
per case characters are converted to lower case. Al-
though we can easily workaround those limitations by
using shell command substitution to generate the de-
sired characters, we chose to only use the command

4

$./ puputils.ppc verify modified.pup hdx
pc[0]: Welcome to the PUP Utilities.
pc[0]: Verifying the integrity of the PUP file "modified.pup"

pup file SHA -1 Hash: (160-bit)
11876296 a8d432841de41526200543caf10ab020
pc[0]: {1} Verified that we are working with a .pup file.
pc[0]: {2} PUP header version = 002

MAC: (160-bit)
5c3aa27774bd22ff98a1bd95aef09b3b1e11c6f0
pc[0]: The MAC does not match! The PUP header appears to have

been tampered with.
pc[0]: returning PUP_ERR_HDR_MAC_MISMATCH

Listing 1: PUP utility prints expected MAC value of modified PUP file

$ cu -l ttyUSB0 -s 9600
-> setenv othbootargs "devboot=bogus"
-> reboot
reboot , are you sure? <y,n> y

Listing 2: Enabling development mode on a HDX system via a serial connection

injection to turn the system into development mode
from which it is much more comfortable to work from.
To enable development mode we have to inject the
command /opt/polycom/bin/devconvert bogus. We
replace every forward slash with the shell command
substitution `pwd|cut -c1` which generates the for-
ward slash for us. Running this command typically
enables development mode and finally reboots the sys-
tem. However after injecting this command the system
doesn’t reboot. We suspect that it’s related to the fact
that the system is running in update mode when we
trigger the exploit. However waiting a few minutes and
then power cycling the system will successfully boot
into development mode and we are able to login via
telnet as root.

3.3.3 Firmware Downgrade

The problem with the described ways of rooting the
device is that they are not long-lasting since the used
vulnerabilities will most probably be fixed by Polycom
in future software updates. One obvious solution would
be to just find another vulnerability. However an easier
possibility is to just downgrade the running software
version to one which is known to be vulnerable. After
rooting the device via a known vulnerability we just
upgrade back to the current software version. Since
we have full control over the device during the upgrade
process, we can make sure to keep the root access even
after the software upgrade was applied.

3.4 System Architecture

The HDX system is an embedded PowerPC-based
Linux system running Linux kernel 2.6.33.3. It’s us-
ing the U-Boot boot loader. It comes with most of
the standard Linux binaries including busybox, wget

and even a gdbserver binary. The main storage has
four partitions. The first partition /dev/hda1 contains
boot-related files and the Linux kernel image. The root
file system can be found in /dev/hda2 and it’s mounted
read-only. The third partition /dev/hda3 stores all the
changing files such as log and configuration files. It’s
mounted on the /data directory. The fourth partition
/dev/hda4 hosts the factory restore filesystem which
contains the restore image restore image.tgz. This
file contains the system software which is installed when
a factory restore is performed. The partition is not
mounted in production use.

All the Polycom-specific files can be found inside the
/opt/polycom/ directory. Polycom binaries reside in
the bin/ subdirectory while configuration settings are
stored in .dat files in the /opt/polycom/dat/ direc-
tory. Each .dat file stores a single configuration setting
which consists of one or more lines of text.

3.4.1 System Startup

Once the kernel was loaded the /etc/init.d/rcS

script is executed which brings up the main services
of the HDX system. The system can either boot in
production or development mode which is decided by
the devboot U-Boot environment variable.

If the system boots in production mode, one of the
first things it checks is if the USB Diag Mode should be

5

enabled. In this mode a diagnostic console is launched
on an attached USB serial device. To check if this
mode should be enabled, the system looks for any at-
tached USB storage devices and tries to locate the file
diags.pdp. This file is called the Polycom Diagnos-
tic Package. If that file is found on an attached USB
storage device, the validity of it is first verified with
the puputils.ppc binary. If validation succeeds, the
file is extracted, an embedded shell script is executed
and the USB diagnostic mode is enabled. For further
details refer to the /opt/polycom/bin/usb diags shell
script.

If the system is booted in development mode it tries
to mount a developer workspace via NFS. The address
of the remote NFS server is stored inside the devboot

variable. The value “bogus” can be used to skip the
NFS mount. In addition to mounting an NFS share, a
telnet server is spawned on port 23 which allows logins
with the user root without a password.

3.4.2 Main Processes

The main functionality of the HDX system is provided
by two different processes which communicate with
each other. The first process is called Polycom AVC
and it’s implemented in the /opt/polycom/bin/avc bi-
nary. This is a huge non-stripped binary of around 50
MB implemented in C and amongst many other things
it contains all the implementations for the videoconfer-
encing protocols like H.323 and SIP.

The other main process is based on Java and its
implementation is scattered around several JAR files.
Among other things this process is responsible for the
GUI and also implements most of the administrative
web interface functionality.

Both processes are running as the user root

and communicate via XCOM, which is Polycom’s
IPC mechanism. The XCOM server is pro-
vided by the Java process and implemented in the
polycom.nativeaccess.XCOMConnection class. By
default it listens on localhost on port 4121. The XCOM
protocol itself is a simple text-based protocol which is
described in Section 6 in more detail.

The web server which provides the administrative
web interface is based on lighttpd. The basic func-
tionality as well as authentication is implemented in
the Java process. The communication with the Java
components happens via FastCGI.

4 Bug Hunting

When starting to look for bugs the main processes
mentioned in the previous section are a good start-
ing point. If the goal is to find vulnerabilities in the
administrative web interface, the JAR files implement-

ing the main functionality of that interface can be de-
compiled and analyzed for potential bugs. The JAR
files can be found in the /opt/polycom/bin directory.
Every Java class handling CGI requests extends the
polycom.web.CGIHandler class and thus can easily be
identified in further code reviews.

If the final goal is to find vulnerabilities in one of the
supported videoconferencing protocols, the avc binary
should be reverse engineered. In the current firmware
update this binary is not stripped which eases the re-
verse engineering process and makes it easy to find the
relevant code. From a bug hunting perspective the bi-
nary looks pretty interesting as well. Just to give an
example, there are more than 800 cross-references to
the strcpy function and more than 1400 calls to the
sprintf function. Obviously this by itself is no proof
for vulnerabilities but is a good indicator for the general
code quality. Additionally the binary is not compiled
with any exploit mitigations, simplifying the exploita-
tion of any potential vulnerability.

Although bug hunting can be done solely based on
the extracted firmware files, it’s always helpful to be
able to debug the running software. Especially when it
comes to exploit development, having a working debug
environment can save some time.

4.1 Remote Debugging

Debugging directly on the HDX system is no real option
because of memory constraints. However the system
comes with a gdbserver binary which can be used. On
the HDX system we just execute “gdbserver :1234

--attach `pidof avc`” to attach to the running avc

process.
On the debug client host we just need a version of

GDB which was compiled for the powerpc-linux tar-
get architecture. It is important that we let GDB know
where the remote shared libraries reside on our system.
If this step is skipped GDB will be able to attach, but
breakpoints won’t work and kill the process. So after
starting powerpc-linux-gdb from inside the unpacked
firmware’s polycom swupdate/ directory, we can set
the solib-absolute-prefix and solib-search-path

GDB variables to achieve the desired effect. Listing 3
shows how to remotely attach to the debug stub run-
ning on the HDX system.

4.2 Watchdog Daemon

The HDX system is using a watchdog daemon which
automatically detects crashes and processes which are
not responding and automatically reboots the system
in such a case. This behavior is undesirable since it
will reboot the HDX system once we stop the avc pro-
cess inside the debugger for too long or trigger a crash
through fuzz testing.

6

$ pwd
/firmware/polycom_swupdate
$ powerpc -linux -gdb polycom/bin/avc
[...]
(gdb) set solib -absolute -prefix nonexistent
(gdb) set solib -search -path ./lib:./usr/lib:./ polycom/bin
(gdb) target remote 10.0.0.1:1234
Remote debugging using 10.0.0.1:1234
[...]

Listing 3: Remote debugging the avc process on the HDX system

To disable the watchdog daemon we can’t just
kill the watchdogd process, since this will be fol-
lowed by a system reset. However by reverse en-
gineering the watchdogd binary we found a way
to disable the watchdog daemon with a configura-
tion setting. When the daemon is started at sys-
tem boot time it will check for the existence of
the /opt/polycom/dat/watchdog disable.dat file. If
that file exists the watchdog daemon won’t be enabled.

5 Attack Implementation

To demonstrate the feasibility of remotely compromis-
ing a Polycom HDX system we were looking for a vul-
nerability which could be exploited in the most secure
setup possible. Although the administrative web inter-
face looks promising from a bug hunting perspective it
should be firewalled in a production environment. The
same is true for all the other administrative interfaces.
However if the system is used for videoconferencing pur-
poses either the H.323 or SIP port must be reachable.

In the following we concentrate on the H.323 pro-
tocol because this is what was configured in most of
the videoconferencing equipment we encountered in the
past.

5.1 Introduction to H.323

The H.323 standard is an umbrella recommendation
from the ITU Telecommunications Standardization
Sector (ITU-T). It defines multimedia collaboration on
packet-based networks among two or more entities. Al-
though originally intended for VoIP applications, nowa-
days it is mostly used for videoconferencing, while SIP
displaced H.323 for most VoIP applications.

H.323 is a complex recommendation with many stan-
dards defining various aspects of the protocol. The
most important signaling protocols from a bug hunt-
ing perspective are probably H.225.0-Q.931, H.225.0-
RAS and H.245. H.225.0-Q.931 defines the call signal-
ing protocol and media-stream packetization for set-
ting up and releasing calls. H.225.0-RAS defines the
procedures and signaling between endpoints and gate-

keepers, while H.245 defines the procedures and signal-
ing between two endpoints to exchange capabilities and
control media streams.

All of these protocols are used for point-to-point calls
and are used early in the connection setup phase, which
makes them ideal candidates for potential vulnerabili-
ties. For the purpose of this case study we are specif-
ically interested in the H.225.0-Q.931 protocol. This
protocol consists of different binary-encoded messages.
Each binary encoded message consists of fields known
as Information Elements which are encoded in ASN.1.
Several different information elements are defined and
provide various information to the remote site such e.g.
the callers identity or other connection-related param-
eters. A complete list can be found in Table 4-3 of the
Q.931 standard [4].

To initiate a call, a client establishes a connection
on TCP port 1720 and sends a SETUP packet which
indicates its desire to start a call. Several other packet
types are part of a full call establishment, however we
are only interested in the initial SETUP packet for the
purpose of this discussion. Refer to [5] for a thorough
introduction to H.323.

5.2 The Vulnerability

For every received SETUP packet the Polycom HDX
system writes a call detail record (CDR) into its
internal database. This even happens when the
connection is not accepted. The CDR table is
stored in a SQLite database which can be found in
the /data/polycom/cdr/new/localcdr.db file on the
HDX system.

For every call, several things are stored in the
database. This includes the call start time, call end
time, the call direction as well as the remote system
name among other things. A complete list of stored
items can be found in [10].

The remote system name stored in the CDR is di-
rectly taken from the string placed in the Display infor-
mation element from the sent SETUP packet. However
no input validation is performed on the string extracted
from the packet which leads to two different vulnera-
bilities.

7

The SQL query string to insert a new CDR is con-
structed by simple string concatenation. Since the Dis-
play information element can contain strings with em-
bedded single quote characters the code is vulnerable
to a simple SQL injection vulnerability. Listing 4 shows
the debug output after sending a single H.323 SETUP
packet with a Display information element which con-
tains a single quote character.

Looking promising at the first glance there is one
complication. The constructed SQL statement is first
passed to the sqlite3 prepare v2 API function which
only compiles the first statement of the SQL query
string and then passes the prepared statement to the
sqlite3 step function. This prevents us from sim-
ply appending another SQL statement by using a semi-
colon. Although this might be exploitable we couldn’t
figure out a way in the limited time we spent looking
into this vulnerability.

However there is another vulnerability related to
the constructed SQL query string. After the string is
constructed it is passed to the internal puts() func-
tion at .text:1000c7c0 which ends up calling the
vsnprintf() function inside va logmsg() for logging
purposes. The complete SQL query string is passed
as the format string argument to vsnprintf() which
leads to a format string vulnerability. Listing 5 shows
the arguments passed to the va logmsg function. Part
of the fmt format string argument is the embedded Dis-
play information element which we control.

5.3 Exploitation

To exploit this bug basic format string exploitation
techniques [13] can be used. However some constraints
need to be considered which are described below. We
start by defining our exploitation plan. We can turn the
format string bug into a write4 primitive which then
allows us to write four arbitrary bytes at an arbitrary
address in memory. We then use the write4 primitive
to first place our shellcode somewhere in memory and
finally use it again to overwrite a function pointer trig-
gering a jump into our shellcode.

5.3.1 Creating a Write4 Primitive

We first create a write4 primitive out of the bug. To
write an arbitrary 32-bit value at an arbitrary memory
address we are using four separate %n format specifiers
to write four 32-bit values, decrementing the destina-
tion address for each written value. This way the writ-
ten value will be composed of the least significant bytes
of each written 32-bit value.

We add an appropriate number of padding charac-
ters between each %n format specifier to adjust the least
significant byte of every written 32-bit value so that we
control the final written value. The four pointers to

the destination memory addresses are stored in the be-
ginning of the string in decreasing order. They are fol-
lowed by just enough dummy format specifiers so that
the final %n format specifiers use the stored addresses as
their destination pointers. The layout of the described
Display information element string is shown in Figure
2. The “.ppp” strings represent the needed precision
specifiers to adjust the value of each written byte.

A
[where]
%.8x
[where-1]
%.8x
[where-2]
%.8x
[where-3]
...
%8x%8x%8x
%8x%8x%8x
%8x%8x%8x
...
%.pppx
%n
%.pppx
%n
%.pppx
%n
%.pppx
%n

Stack alignment
Destination address
Referenced by value padding
Destination address - 1
Referenced by value padding
Destination address - 2
Referenced by value padding
Destination address - 3

Padding format specifiers

Value padding for byte 4
Write byte 4
Value padding for byte 3
Write byte 3
Value padding for byte 2
Write byte 2
Value padding for byte 1
Write byte 1

Figure 2: Format string layout for write4 primitive

A side effect of this technique is that we overwrite the
three bytes in front of the written value. We just have
to keep that in mind when using the write4 primitive.

With the created write4 primitive we can write four
arbitrary bytes by sending a single H.323 SETUP
packet. However there is a constraint on the characters
we can use in the Display information element. Ev-
ery byte must be larger 0 and smaller 0x80. Otherwise
the format string bug is not triggered. Additionally the
byte 0x25 representing the percent character is undesir-
able because it would be interpreted as part of a format
specifier. This means for our write4 primitive that the
addresses we can write to must only consist of those
valid bytes. Additionally the three addresses dest-3,
dest-2 and dest-1 preceding the destination address
dest must also adhere to the constraint due to the way
we implemented the write4 primitive.

8

DEBUG avc: pc[0]: INSERT into CDR_Table values (’82 ’ , ’1347442631 ’ , ’1347443321 ’ ,
’690’,’---’,’SQL'INJECT’,’’,’---’,’h323 ’,’0’,’’,’1’,’327’,’1’,’0’,’---’,’---’,
’term
DEBUG avc: pc[0]: Can ’t prepare database: near "INJECT ": syntax error
DEBUG avc: pc[0]: sqlInsert: time = 1
DEBUG avc: pc[0]: NOTIFY: SYS config cdrrowid1 0 "83" rw
DEBUG avc: pc[0]: H323Conn [0]: state :" incoming" --> "disconnecting"
DEBUG avc: pc[0]: H323Call [0]: hangup , cause code 16

Listing 4: Triggering SQL injection with a single H.323 SETUP packet

(gdb) break *0 x1032E3AC
Breakpoint 1 at 0x1032e3ac: file ../../../ src/Common/OS/logmsg.c, line 747.
(gdb) c
Breakpoint 5, 0x1032e3ac in va_logmsg (ap=0x5e97d298 , level=<optimized out >,

component=<optimized out >, fmt=0 x5e97d344 "INSERT into CDR_Table values(
’23’,’0’,’1347451282’,’1347451282’,’---’,’WE CONTROL THIS %n%n%n’,’’,’---’,
’h323 ’,’0’,’’,’1’,’365’,’1’,’0’,’---’,’---’,’terminal ’,’’,’---’,’---’,
’---’,’---’,’---’,’---’,’The call has ended.’,’16’,’0’,’---’,’---’,’---’,
’---’,’---’,’---’,’---’,’---’,’---’,’---’,’---’,’---’,’25’);")
at ../../../ src/Common/OS/logmsg.c:747

Listing 5: Format string vulnerability in SQL query string logging code

5.3.2 Storing the Shellcode

The next step is to find a place in memory where we can
store our shellcode. Having the address constraint in
mind a quick look through the program segments turns
up only a single segment which is writeable and ful-
fills our constraint. It’s the BSS segment which ranges
from the address 0x10d48320 to 0x11ea39a0. Various
memory blocks of consecutive 80 bytes can be found
in the BSS segment which is enough to store a simple
shellcode.

5.3.3 Function Pointer Overwrite

Next we need to find a function pointer which can be
overwritten and triggered to jump into our shellcode.
The mtctr and bctrl PowerPC instructions are used
to perform indirect function calls. In order to find po-
tential candidates we look at the cross-references of all
variables in the BSS segment which are located at ad-
dresses fulfilling the mentioned address constraint and
check if they are used to store a function pointer.

One of the first variables found is the CodecPoleList
variable stored at the address 0x111d0918. This
variable stores a pointer which is referenced in
the VideoBitStreamPoleTimerProc function. The
CodecPoleList pointer plus a constant offset of 0x1494
is dereferenced and then used to read a function pointer
where the code jumps to. We verified that this function
is called every few seconds making it a perfect target
for the overwrite.

5.3.4 Shellcode

For the proof-of-concept exploit we use a basic shellcode
which just calls the system() library function with a
shell command line of our choosing. The shellcode, a
pointer to the shellcode and the shell command line are
first stored in the BSS segment by triggering the for-
mat string bug several times and finally we overwrite
the CodecPoleList pointer with the address where we
stored the pointer to our shellcode minus the constant
0x1494. This immediately triggers the execution of the
shellcode and executes our shell command line as the
user root, which is the user the avc process is run-
ning under. Since the VideoBitStreamPoleTimerProc

function is running in a separate timer thread the sys-
tem keeps running while the payload is executed via
the system() API function.

5.3.5 Reliability

The created proof-of-concept exploit was only used to
demonstrate the feasibility of remote code execution
and no further work has been done to make it one-
hundred percent reliable. There are two influencing
factors we know of which could make the exploit fail
and would require another attempt.

The SQL query string for the CDR entry starts with
an increasing ID. We only have control over the string
after this ID. The ID increases for every record written
to the database, but wraps around to 0 when it reaches
the value 99. This means it can either be a one-digit
or two-digit number. Since our padding relies on the
number of characters preceding the part of the string we
control, we are making an educated guess and assume

9

a two-digit number. If the guess was wrong or the ID
wrapped around during the exploit attempt, the system
will crash and reboot. After the system rebooted we
can send ten dummy SETUP packets to make the ID
a two-digit number. If the crash happened due to this
problem, a second exploit attempt will succeed.

A second unreliability stems from another increasing
ID embedded in the SQL query string after the part
which we control. It’s the 13th column value which
can grow up to a value of around 2411 after which it
will wrap around. The length of this ID influences the
bytes we are writing with our write4 primitive. The
range of possible lengths is one to four with increasing
probability. Again we make an educated guess about
the length of the ID and just try another one if the
system crashes and reboots.

Again the mentioned problems can probably be
worked around with a bit more effort. However we
didn’t invest the time to improve the reliability, since
the exploit in its current form proofs that remote code
execution is possible. Additionally the system auto-
matically reboots once a crash is encountered giving
the attacker multiple tries.

6 Payload Development

After compromising an HDX system you typically
want to control the device’s peripherals like moving
the camera, recording voice using the microphone,
playing sounds or displaying childish messages on
the screen. To find out how to perform those ac-
tions the Polycom Command Shell implemented in the
/opt/polycom/bin/psh binary is a good starting point
because it is possible to perform most of these actions
via the provided command line interface.

Reverse engineering the psh binary shows that the
functionality itself is not implemented inside the psh

binary. The Polycom Command Shell communicates
via the Polycom XCOM IPC mechanism with the Java
component which implements most of the functionality.
So by talking XCOM directly our payload can make use
of all the functionality.

6.1 XCOM Protocol

The XCOM protocol is a simple text-based protocol
locally provided on port 4121. In addition to the
TCP communication channel it also provides an asyn-
chronous data reception mechanism via UNIX domain
sockets.

Commands and responses send and received on the
TCP socket are prefixed with an uppercase character
identifying the command or response class, followed by
a colon and space character. Every sent command is

answered with a single line response. Notifications (pre-
fixed by “N: ”) can be received asynchronously by an
XCOM client without first sending a command.

When the psh binary is started it first creates a UNIX
domain socket in the /tmp directory which acts as its
asynchronous listener. It then connects to the XCOM
server on port 4121 and sends a command to regis-
ter the created async listener with the current XCOM
session. The first part of the command is the desired
XCOM session type which is identical to the value
which can be provided to the psh binary via the -t

command line switch. It can be either “api” for an
API session or “telnet” for a Polycom Command Shell
session. The second part is the path of the previously
created UNIX domain socket where the XCOM server
sends asynchronous responses to executed commands.
The last part of the command is the current pseudo
terminal.

After registering its asynchronous listener psh au-
thenticates the current user. It first reads the username
and password and sends them in hex-encoded form to
the XCOM server for verification. If authentication was
successful the user’s role is returned (e.g. “adminlogin”
for a successful administrator login) on the bound asyn-
chronous listener. If authentication failed, the string
“failed” is returned. The XCOM communication of a
failed administrator login can be seen in Listing 6. The
used async binary is just a small tool we wrote which
creates a UNIX domain socket and prints out any data
it receives.

Authentication is only a service used by the psh bi-
nary, but it’s not required in order to use the XCOM
interface. In order to send arbitrary commands to the
XCOM server we just have to register an asynchronous
listener (which we don’t have to create) and then we can
send all the available Polycom Command Shell com-
mands by prefixing them with the “C: ” string prefix.
A listing of all psh commands can be obtained with the
help command in the Polycom Command Shell. The
help command can also be used to get detailed usage
instructions for each command. Listing 7 shows how to
move the camera by locally connecting to the XCOM
server via telnet.

In addition to the commands already provided by the
psh binary, further commands can be found by reverse
engineering the relevant Java classes implementing the
XCOM server. With the help of the commands pro-
vided by the XCOM interface it would be possible to
create a HDX-specific rootkit which could take com-
plete control over the attached video camera and mi-
crophones.

6.2 Framebuffer Drawing

If the goal of the attack is to control the content of
the screen (we only used this for demo purposes), the

10

./async /tmp/listener &
[*] Connecting to async listener /tmp/listener ...
[*] Successfully established connection
telnet localhost 4121
R: telnet /tmp/listener /dev/pts/0
R: 0
E: control login "61646d696e" "666f6f626172" /dev/pts/0
[*] Received on async listener: failed
R: 0

Listing 6: XCOM communication of a failed administrator login

telnet localhost 4121
R: telnet /tmp/dummy /dev/pts/0
R: 0
C: camera near move up
N: SYS+config+powerlight +0+%22 Blue*on *0*0%22+ rw
N: VID+videoroute+set +27+ complete+vout1 +1920+1080+ Component +50+ Interlaced
N: VID+videoroute+set +28+ complete+mon3 +704+576+ SVideo +25+ Interlaced
R: 0

Listing 7: Moving the camera via XCOM with telnet

system provides a separate binary which can be used
for this purpose. The frame-buf-draw binary allows
drawing on the framebuffer. It’s possible to draw ar-
bitrary JPEG images or text. The binary itself can
be found in the /opt/polycom/bin/post.tgz archive
which must be unpacked first. Usage instructions are
shown in Listing 8.

7 Related Work

A sheer number of publications have been released in
the past on the security of the typical signaling (H.323
and SIP) and media transfer (RTP) protocols used for
videoconferencing. Implementation flaws in the signal-
ing protocols are covered in [7], [6], [15] and [14], to
just name a few. Most of the work in that area was
published in the context of VoIP security though.

The publication [1] talks about securing Polycom
videoconferencing endpoints. However only aspects
concerning the secure configuration are covered. Quite
recently HD Moore demonstrated the need for secur-
ing the configuration of videoconferencing systems in
[2]. He showed that thousands of videoconferencing
systems were publicly accessible over the internet and
had the call auto-answer feature turned on. He found
systems at several top venture capital and law firms,
pharmaceutical and oil companies and courtrooms. By
calling into those systems he was able to listen into
conversations and remotely control the camera.

8 Conclusion

In this paper we have laid the groundwork for conduct-
ing future security assessments on the HDX series of
devices which is one of the main product lines of video-
conferencing equipment sold by the market leader Poly-
com. After analyzing the software update file format
and showing how to get system level access to the oth-
erwise closed devices, we described how to setup a vul-
nerability development environment which can be used
for bug hunting and exploit development.

Based on that, we demonstrated the feasibility of re-
mote exploitation by implementing an exploit for one
of the vulnerabilities we identified in the H.323 stack
affecting the latest software version. This allowed us to
compromise Polycom HDX systems remotely by just
sending H.323 SETUP packets.

Finally we discussed possible exploit payloads and
introduced Polycom’s XCOM IPC mechanism which
could be used to control connected peripherals such as
the video camera and microphones in order to imple-
ment surveillance functionality in a post-exploitation
scenario.

References

[1] Christianson, J. S. Polycom Videoconfer-
encing Endpoint Security and Configuration.
SANS Institute, InfoSec Reading Room, http:

//www.sans.org/reading_room/whitepapers/

commerical/polycom-videoconferencing-

endpoint-security-configuration_21

(2012/10/29), 2003.

11

http://www.sans.org/reading_room/whitepapers/commerical/polycom-videoconferencing-endpoint-security-configuration_21
http://www.sans.org/reading_room/whitepapers/commerical/polycom-videoconferencing-endpoint-security-configuration_21
http://www.sans.org/reading_room/whitepapers/commerical/polycom-videoconferencing-endpoint-security-configuration_21
http://www.sans.org/reading_room/whitepapers/commerical/polycom-videoconferencing-endpoint-security-configuration_21

/usr/diags/video/bin/frame-buf-draw --help
usage: frame -buf -draw [option ...] action

Options are:
--help Show this text.
--version Show program version.
--left <num > Left pixel offset of drawing. Default is 0.
--top <num > Top pixel offset of drawing. Default is 0.
--right <num > Right pixel offset of black rectangle.

Default is edge of monitor.
--bottom <num > Bottom pixel offset of black rectangle.

Default is edge of monitor.
--init Initialize frame buffer driver before using.
--file <file_name > Image file to read.

Actions are:
--black Draw a solid black rectangle.
--image Draw an image from a file.
--progdot <num > Assume image file is a progress dot , and draw

it at the location for dot index <num > instead
of --left ,--top.

--text <num > Assume image file is a text message , and draw
it at the location for row index <num > instead
of --left ,--top.

--progerase <num > Same as --black , but assume upper left corner
is row index <num > instead of --left ,--top ,
where row zero is the dots.

--maybe -erase Erase the entire screen if the splash image
consumes too much of it.

--ipaddr <string > Draw decimal IP address <string > at the
location for row index zero.

Listing 8: Usage information for the frame-buf-draw program

12

[2] HD Moore. Board Room Spying for Fun
and Profit. https://community.rapid7.com/

community/metasploit/blog/2012/01/23/

video-conferencing-and-self-selecting-

targets (2012/10/29), January 2012.

[3] Heffner, C. Binwalk. http://code.google.

com/p/binwalk/ (2012/10/30).

[4] International Telecommunication Union.
Isdn user-network interface layer 3 specification for
basic call control. ITU-T Recommendation Q.931,
1988.

[5] Kumar, V., Korpi, M., and Sengodan, S. IP
Telephony with H.323: Architectures for Unified
Networks and Integrated Services. John Wiley &
Sons, Inc., 2001.

[6] N.N.P. VoIPER: Finding VoIP vulnerabilities
while you sleep. Presentation at DEF CON 16,
August 2008.

[7] Nuwere, E., and Varpiola, M. The Art of SIP
fuzzing and Vulnerabilities Found in VoIP. Presen-
tation at Black Hat Japan, October 2005.

[8] Office of the Press Secretary. Readout of
the President’s Videoconference with Chancellor
Merkel, President Hollande and Prime Minister
Monti. http://www.whitehouse.gov/the-

press-office/2012/05/30/readout-

presidents-videoconference-chancellor-

merkel-president-hollande- (2012/10/29),
May 2012.

[9] Polycom. Solutions by Industry. http:

//www.polycom.com/solutions/solutions-by-

industry.html (2012/11/05).

[10] Polycom. Administrator’s Guide for Polycom
HDX Systems. http://supportdocs.polycom.

com/PolycomService/support/global/

documents/support/setup_maintenance/

products/video/hdx_ag.pdf (2012/10/30), July
2012.

[11] Polycom. Integrator’s Reference Man-
ual for Polycom HDX Systems. http:

//supportdocs.polycom.com/PolycomService/

support/global/documents/support/setup_

maintenance/products/video/hdx_irm.pdf

(2012/10/30), July 2012.

[12] Social Security Administration. Why
You Should Have Your Hearing By Video.
SSA Publication No. 70-067, ICN 443300,
http://www.socialsecurity.gov/appeals/

odar_pubs/70-067.html (2012/10/29), April
2008.

[13] team teso, S. . Exploiting format string
vulnerabilities. http://packetstormsecurity.

org/papers/unix/formatstring-1.2.tar.gz

[2012/11/02].

[14] Trammell, D. D. VoIP Attacks! Presen-
tation at CSI 2007, http://druid.caughq.

org/presentations/VoIP-Attacks.pdf

(2012/10/29), 2007.

[15] University of Oulu. PROTOS Test-Suite: c07-
h2250v4. https://www.ee.oulu.fi/research/

ouspg/PROTOS_Test-Suite_c07-h2250v4

(2012/10/29).

13

https://community.rapid7.com/community/metasploit/blog/2012/01/23/video-conferencing-and-self-selecting-targets
https://community.rapid7.com/community/metasploit/blog/2012/01/23/video-conferencing-and-self-selecting-targets
https://community.rapid7.com/community/metasploit/blog/2012/01/23/video-conferencing-and-self-selecting-targets
https://community.rapid7.com/community/metasploit/blog/2012/01/23/video-conferencing-and-self-selecting-targets
http://code.google.com/p/binwalk/
http://code.google.com/p/binwalk/
http://www.whitehouse.gov/the-press-office/2012/05/30/readout-presidents-videoconference-chancellor-merkel-president-hollande-
http://www.whitehouse.gov/the-press-office/2012/05/30/readout-presidents-videoconference-chancellor-merkel-president-hollande-
http://www.whitehouse.gov/the-press-office/2012/05/30/readout-presidents-videoconference-chancellor-merkel-president-hollande-
http://www.whitehouse.gov/the-press-office/2012/05/30/readout-presidents-videoconference-chancellor-merkel-president-hollande-
http://www.polycom.com/solutions/solutions-by-industry.html
http://www.polycom.com/solutions/solutions-by-industry.html
http://www.polycom.com/solutions/solutions-by-industry.html
http://supportdocs.polycom.com/PolycomService/support/global/documents/support/setup_maintenance/products/video/hdx_ag.pdf
http://supportdocs.polycom.com/PolycomService/support/global/documents/support/setup_maintenance/products/video/hdx_ag.pdf
http://supportdocs.polycom.com/PolycomService/support/global/documents/support/setup_maintenance/products/video/hdx_ag.pdf
http://supportdocs.polycom.com/PolycomService/support/global/documents/support/setup_maintenance/products/video/hdx_ag.pdf
http://supportdocs.polycom.com/PolycomService/support/global/documents/support/setup_maintenance/products/video/hdx_irm.pdf
http://supportdocs.polycom.com/PolycomService/support/global/documents/support/setup_maintenance/products/video/hdx_irm.pdf
http://supportdocs.polycom.com/PolycomService/support/global/documents/support/setup_maintenance/products/video/hdx_irm.pdf
http://supportdocs.polycom.com/PolycomService/support/global/documents/support/setup_maintenance/products/video/hdx_irm.pdf
http://www.socialsecurity.gov/appeals/odar_pubs/70-067.html
http://www.socialsecurity.gov/appeals/odar_pubs/70-067.html
http://packetstormsecurity.org/papers/unix/formatstring-1.2.tar.gz
http://packetstormsecurity.org/papers/unix/formatstring-1.2.tar.gz
http://druid.caughq.org/presentations/VoIP-Attacks.pdf
http://druid.caughq.org/presentations/VoIP-Attacks.pdf
https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c07-h2250v4
https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c07-h2250v4

	Introduction
	Background
	Polycom HDX Devices
	Attack Surface
	Firmware Analysis
	Rooting the Device
	Polycom Command Shell
	Exploiting Command Injection
	Firmware Downgrade

	System Architecture
	System Startup
	Main Processes

	Bug Hunting
	Remote Debugging
	Watchdog Daemon

	Attack Implementation
	Introduction to H.323
	The Vulnerability
	Exploitation
	Creating a Write4 Primitive
	Storing the Shellcode
	Function Pointer Overwrite
	Shellcode
	Reliability

	Payload Development
	XCOM Protocol
	Framebuffer Drawing

	Related Work
	Conclusion

